
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

326 American Scientist, Volume 103 © 2015 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Randomness and probability
are deeply rooted in modern
habits of thought. We meet
probabilities in the daily

weather forecast and measures of un-
certainty in opinion polls; statistical
inference is central to all the sciences.
Then there’s the ineluctable random-
ness of quantum physics. We live in
the Age of Stochasticity, says David
Mumford, a mathematician at Brown
University.

Ours is also an age dominated by de-
terministic machines—namely, digital
computers—whose logic and arithmetic
leave nothing to chance. In digital cir-
cuitry strict causality is the rule: Given
the same initial state and the same in-
puts, the machine will always produce
the same outputs. As Einstein might
have said, computers don’t play dice.

But in fact they do! Probabilistic algo-
rithms, which make random choices at
various points in their execution, have
long been essential tools in simulation,
optimization, cryptography, number
theory, and statistics. How is random-
ness smuggled into a deterministic de-
vice? Although computers cannot cre-
ate randomness de novo, they can take
a smidgen of disorder from an external
source and amplify it to produce copi-
ous streams of pseudorandom numbers.
As the name suggests, these numbers
are not truly random, but they work
well enough to fool most probabilistic
algorithms. (In other words, computers
not only play dice, they also cheat.)

A recent innovation weaves ran-
domness even more deeply into the

fabric of computer programming. The
idea is to create a probabilistic pro-
gramming language (often abbrevi-
ated PPL and sometimes pronounced
“people”). In a language of this kind,
random variables and probability dis-
tributions are first-class citizens, with
the same rights and privileges as oth-
er data types. Furthermore, statistical
inference—the essential step in teas-
ing meaning out of data—is a basic,
built-in operation.

Most of the probabilistic languages
are still experimental, and it’s unclear
whether they will be widely adopted
and prove effective in handling large-
scale problems. But they have already
provided an intriguing new medium
for expressing probabilistic ideas and
algorithms.

Counting vs. Sampling
Suppose you throw three standard
dice, colored red, green, and blue for
ease of identification. What are the
chances of scoring a 9? No less a lumi-
nary than Galileo Galilei took up this
question 400 years ago—and got the
right answer! His method was enu-
meration, or counting all the cases.
Each die can land in six ways, so the
number of combinations is 63, or 216. If
the dice are fair, all these outcomes are
equally likely. Go through the table of
216 combinations and check off those
with a sum of 9. You’ll find there are 25
of them, giving a probability of 25⁄216, or
11.6 percent.

Another way to answer the same
question is simply to run the experi-
ment: Roll the dice a few million times
and see what happens. This sampling
procedure is easier with computer-
simulated dice than with real ones
(an option unavailable to Galileo).

In 216 million simulated rolls I got
24,998,922 scores of 9, for a probability
within 0.01 percent of the true value.

Enumeration is often taken as the
gold standard for probability calcu-
lations. It has the admirable virtue of
exactness; it is also deterministic and
repeatable, whereas sampling gives
only approximate answers that may
be different every time. But sampling
also has its defenders. They argue that
randomized sampling offers a closer
connection to the way nature actually
works; after all, we never see the ideal-
ized, exact probabilities in any finite
experiment.

In the end, these philosophical quib-
bles are usually swept aside by practi-
cal constraints: Enumerating all pos-
sible outcomes is not always feasible.
You can do it with a handful of dice,
but you can’t list all possible sequences
of English words or all possible arrays
of pixels in an image. When it comes
to exploring these huge search spaces,
sampling is the only choice.

The size of the solution space is not
the only challenge in solving probabil-
ity problems; another factor is the com-
plexity of the questions being asked.
You may need to estimate joint prob-
abilities (how often do x and y occur
together?) or conditional probabilities
(how likely is x, given that y is ob-
served?). The most interesting queries
are often matters of inference, where
the aim is to reason “backwards” from
observed effects to unknown causes.
In medical diagnosis, for example, the
physician records a set of symptoms
and must identify the underlying dis-
ease. The conclusion depends not only
on the probability that a disease will
give rise to the observed symptoms but
also on the probability of the disease

Programs and Probability
Computer programs must cope with chance and uncertainty, just as people do. One
solution is to build probabilistic reasoning into the programming language.

Brian Hayes

Brian Hayes is senior writer for American Scien-
tist. Additional material related to the Comput-
ing Science column can be found online at http://
bit-player.org. E-mail: brian@bit-player.org

Computing
Science

2015 September–October 327www.americanscientist.org © 2015 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

itself in the population. (The formal
statement of this principle is known as
Bayes’ rule. It’s also implicit in an old
saying among diagnosticians: Uncom-
mon presentations of common diseases
are more common than common pre-
sentations of uncommon diseases.)

A Random Walk in Monte Carlo
The idea of solving probability prob-
lems by running computer experi-
ments had its genesis at the Los Ala-
mos laboratory soon after World War
II. The mathematician Stanislaw Ulam
was playing solitaire while recuperat-
ing from an illness and tried to work
out the probability that a random deal
of the cards would yield a winning
position.

After spending a lot of time try-
ing to estimate [the probability]
by pure combinatorial calcula-
tions, I wondered whether a more
practical method than “abstract
thinking” might not be to lay it
out say one hundred times and
simply observe and count the
number of successful plays. This
was already possible to envisage
with the beginning of the new era
of fast computers . . .

Ulam’s technique was named the
Monte Carlo method, after the famous
randomizing devices in that Mediter-
ranean capital. In 1948 the scheme was
put to work on a graver task than solv-
ing solitaire. A program running on the
ENIAC, the early vacuum tube com-
puter, calculated the probability that a
neutron moving through a cylinder of
uranium or plutonium would be ab-
sorbed by a fissionable nucleus before
wandering away. (I don’t know if Ulam
ever got back to the solitaire problem.)

The most basic algorithm for sam-
pling is straightforward: Just make
repeated trials and tally the results.
Where the process gets dicey (so to
speak) is with conditional probabili-
ties. Suppose you want to know the
probability of rolling a 14 with three
dice, on the condition that at least two
of the dice display the same number.
The simplest approach to such a prob-
lem is called rejection sampling. The pro-
gram simulates many rolls of the dice
and discards cases in which the three
dice are all different. This procedure is
clearly correct; it follows directly from
the definition of conditional probabil-
ity. For the dice problem it works fine,
but it becomes woefully inefficient for

studying rare phenomena. The pro-
gram spends most of its time generat-
ing events that it immediately throws
away. Think of trying to stumble on
meaningful English sentences by as-
sembling random sequences of words.

Ideally, we would like to generate
only “successes”—states that satisfy the
imposed condition—without wasting
time on the failures. That goal is not
always attainable, but a family of tech-
niques known as Markov chain Monte
Carlo (MCMC) can often get much
closer than rejection sampling. The ba-
sic idea is to construct a random walk
that visits each state in proportion to its
probability in the observed distribution.

Let’s take a walk through some
states of the two-or-more-equal dice
game. Assume a roll of the dice comes
up red = 2, green = 2, blue = 3, which for
brevity we can denote 223. This combi-
nation satisfies the two-or-more-equal
condition, so we write it down as the
initial state of the system. Now, instead
of picking up all three dice and throw-
ing them again, choose one die at ran-
dom and roll that one alone, leaving
the others undisturbed. If the result
is a state that satisfies the condition,
note it down as the next state. If not,
return to the previous state and write
that down as the second state as well.
Continue by choosing another die at
random and repeat the procedure. A
sequence of states might run 223, 323,
323, 343, 443, 444 . . .

This “chain” of states eventually
reaches all combinations that meet the
two-or-more-equal criterion. In the
long run, moreover, the states in the
random walk have the same probabil-
ity distribution as the one produced
by rejection sampling. In subtler ways,
however, the MCMC sequence is not
quite random. Nearby elements are
closely correlated: 223 can make an
immediate transition to 233 but not
to 556. The remedy is to collect only
every nth state, with a value of n large
enough to let the correlations fade
away. This policy imposes an n-fold
penalty in efficiency, but in many cases
MCMC still beats rejection sampling.

A Language Called Church
Monte Carlo simulations and other
probabilistic models can be written in
any programming language that offers
access to a pseudorandom number gen-
erator. What a PPL offers is an environ-
ment where probabilistic concepts can
be expressed naturally and concisely,
and where procedures for computing
with probabilities are built into the in-
frastructure of the language. Variables
can represent not just ordinary num-
bers but entire probability distribu-
tions. There are tools for building such
distributions, for combining them, for
imposing constraints on them, and for
making inquiries about their content.

A PPL called Church illustrates these
ideas. Church was created by Noah D.

6 6 65 6 6
6 5 6
6 6 5

4 6 6
6 4 6
6 6 4
5 5 6
5 6 5
6 5 5

3 6 6
6 3 6
6 6 3
4 5 6
4 6 5
5 4 6
5 6 4
6 4 5
6 5 4
5 5 5

2 6 6
6 2 6
6 6 2
3 5 6
3 6 5
5 3 6
5 6 3
6 3 5
6 5 3
4 4 6
4 6 4
6 4 4
4 5 5
5 4 5
5 5 4

1 6 6
6 1 6
6 6 1
2 5 6
2 6 5
5 2 6
5 6 2
6 2 5
6 5 2
3 4 6
3 6 4
4 3 6
4 6 3
6 3 4
6 4 3
3 5 5
5 3 5
5 5 3
4 4 5
4 5 4
5 4 4

1 5 6
1 6 5
5 1 6
5 6 1
6 1 5
6 5 1
2 4 6
2 6 4
4 2 6
4 6 2
6 2 4
6 4 2
2 5 5
5 2 5
5 5 2
3 3 6
3 6 3
6 3 3
3 4 5
3 5 4
4 3 5
4 5 3
5 3 4
5 4 3
4 4 4

1 4 6
1 6 4
4 1 6
4 6 1
6 1 4
6 4 1
1 5 5
5 1 5
5 5 1
2 3 6
2 6 3
3 2 6
3 6 2
6 2 3
6 3 2
2 4 5
2 5 4
4 2 5
4 5 2
5 2 4
5 4 2
3 3 5
3 5 3
5 3 3
3 4 4
4 3 4
4 4 3

1 3 6
1 6 3
3 1 6
3 6 1
6 1 3
6 3 1
1 4 5
1 5 4
4 1 5
4 5 1
5 1 4
5 4 1
2 2 6
2 6 2
6 2 2
2 3 5
2 5 3
3 2 5
3 5 2
5 2 3
5 3 2
2 4 4
4 2 4
4 4 2
3 3 4
3 4 3
4 3 3

1 2 6
1 6 2
2 1 6
2 6 1
6 1 2
6 2 1
1 3 5
1 5 3
3 1 5
3 5 1
5 1 3
5 3 1
1 4 4
4 1 4
4 4 1
2 2 5
2 5 2
5 2 2
2 3 4
2 4 3
3 2 4
3 4 2
4 2 3
4 3 2
3 3 3

1 1 6
1 6 1
6 1 1
1 2 5
1 5 2
2 1 5
2 5 1
5 1 2
5 2 1
1 3 4
1 4 3
3 1 4
3 4 1
4 1 3
4 3 1
2 2 4
2 4 2
4 2 2
2 3 3
3 2 3
3 3 2

1 1 5
1 5 1
5 1 1
1 2 4
1 4 2
2 1 4
2 4 1
4 1 2
4 2 1
1 3 3
3 1 3
3 3 1
2 2 3
2 3 2
3 2 2

1 1 4
1 4 1
4 1 1
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
2 2 2

1 1 3
1 3 1
3 1 1
1 2 2
2 1 2
2 2 1

1 1 2
1 2 1
2 1 1

1 1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1

sum of three dice

The 216 possible outcomes of rolling three
dice stack up to form an approximation to the
normal bell curve. The snippet of computer
code at left, written in a programming lan-
guage called Church, gives the probability
of each three-die sum from 3 to 18. Church
is one of a new generation of languages de-
signed to model probabilistic reasoning.

(define (roll-die)
 (uniform-draw '(1 2 3 4 5 6)))

(enumeration-query
 (define r (roll-die))
 (define g (roll-die))
 (define b (roll-die))
 (+ r g b))

328 American Scientist, Volume 103 © 2015 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Goodman, Vikash K. Mansinghka, Dan-
iel M. Roy, Keith Bonawitz, and Joshua
B. Tenenbaum when they were all at
MIT. Goodman and Tenenbaum’s on-
line book, Probabilistic Models of Cognition
(https://probmods.org), provides an en-
grossing introduction to Church and to
probabilistic programming in general.
Readers can modify and run programs
directly in the book’s Web interface.

Church is named for Alonzo Church,
an early 20th–century logician who de-
veloped a model of computation called
the lambda calculus. The Church lan-
guage is built atop Scheme, a dialect of
the Lisp programming language that
has deep roots in the lambda calculus.
Like other variants of Lisp, Church sur-
rounds all expressions with parentheses
and adopts a “prefix” notation, writing
(+ 1 2) instead of 1 + 2.

Here is the Church procedure for
rolling a single die:

(define (roll-die)
 (uniform-draw '(1 2 3 4 5 6)))

When this function is executed, it re-
turns a single number chosen uniform-
ly at random from the list shown. In the
larger context of a probabilistic query,
however, the result of the roll-die

procedure can represent a distribution
over all the numbers in the list.

The query expression below has
three parts: first a list of define state-
ments, creating a model of a probabi-
listic process; second the expression
that will become the subject of the
query (in this case simply the variable
g); and finally a condition imposed on
the outcome:

(enumeration-query
 (define r (roll-die))
 (define g (roll-die))
 (define b (roll-die))
 (define score (+ r g b))
 g
 (condition (> score 13)))

Again we are rolling three simulated
dice, designated r, g, and b. The query
computes the probability distribution
of g subject to the condition that the
sum of r, g, and b is greater than 13.
The result of running the query is a list
giving the possible values of g (2, 3, 4,
5, 6) and their probabilities (ranging
from 0.029 to 0.429).

The keyword enumeration-query in
this program signals that it counts all
cases and returns exact results. Substi-
tuting the keyword rejection-query
produces what you would expect: a

sampling from the same distribution,
performed by discarding cases that fail
to satisfy the greater-than-13 condi-
tion. A third option is the keyword mh-
query, which invokes a Markov chain
Monte Carlo algorithm. (The initials mh
stand for Metropolis-Hastings; Nicho-
las Metropolis was a member of the
early Monte Carlo community at Los
Alamos and W. Keith Hastings is a Ca-
nadian statistician.)

Behind the Curtain
The query expressions of Church spec-
ify what is to be computed but not how;
all the algorithmic magic happens be-
hind the curtains. That’s part of the
point of a PPL—to allow the program-
mer to work at a higher level of ab-
straction, without being distracted by
details of counting cases or collecting
samples. Those details still have to be
attended to, but the necessary code is
written by the implementer of the lan-
guage rather than the user of it.

Embedding such technology inside
a programming language requires
algorithms general enough that they
work in a variety of problem do-
mains, from playing dice to follow-
ing neutrons to recognizing faces in
images. MCMC simulations often ex-
ploit specific features of the problem
definition, but a PPL must somehow
construct a random walk through
the solution space without knowing
anything about the nature of the indi-
vidual states. The strategy adopted in
Church is to regard all possible execu-
tion paths of the program itself as the
elements of the solution space. Each
random choice in the program estab-
lishes a new branch point in the net-
work of execution paths. The Church
MCMC algorithm works by altering
one of those choices and checking to
see if the new output still satisfies any
conditions imposed on the model.

The generic MCMC algorithm is not
quite foolproof. Consider another varia-
tion on the dice game with a slightly
different condition: not (> score 13)
but (= score 13). That is, we want to
find the distribution of values of the
green die when the sum of the three
dice is exactly 13. The Church program
for this task works fine with an enu-
meration query or a rejection query, but
the MCMC program fails. The reason
is that the algorithm always proposes
to alter the value of a single die, an ac-
tion that cannot leave the sum of the
three dice unchanged; thus none of the

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180.0

0.02

0.04

0.06

0.08

0.10

enumeration
rejection sampling
MCMC sampling

sum of three dice, at least two dice equal

pr
ob

ab
ili

ty

Imposing a condition on the dice game—requiring at least two dice to show the same value—
yields a probability distribution quite different from the normal curve. (Be careful if you’re bet-
ting on this game.) The Church program above computes the distribution by rejection sampling,
in which cases that fail to satisfy the condition are discarded. Variants of the same program use
enumeration or Markov chain Monte Carlo (MCMC) sampling. The graph shows all three results.

(rejection-query
 (define r (roll-die)) (define g (roll-die)) (define b (roll-die))
 (define s (+ r g b))

 s

 (condition (or (= r g) (= r b) (= g b)))))

2015 September–October 329www.americanscientist.org © 2015 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

proposals are ever accepted. There are
work-arounds for this problem, such
as defining a “noisy equal” operator
that occasionally judges two numbers
to be equal even when they’re not. But
the need to understand the cause of the
failure and take steps to correct it sug-
gests we have not yet reached the stage
where we can blithely hand off proba-
bilistic models to an automated solver.

Sprouting Languages
PPLs are not the only approach to
computing with probabilities. The
main alternatives are graphical mod-
els, in which networks of nodes are
connected by lines called edges. Each
node represents a random variable
along with its probability distribution;
an edge runs between two nodes if one
variable depends on the other. For ex-
ample, a network for a model of three
dice might look like this:

r g

sum

b

Information flows from each of the
dice to the sum, but not between the
dice because they are independent.

Advocates of PPLs suggest at least
two reasons for favoring a linguistic
over a graphical representation. First,
certain concepts are easier to encode
in a language than in a diagram; an
important example is recursion, where
a program invokes itself. Second, over
the entire history of digital computers,
programming languages have proved
to be the most versatile and expressive
means of describing computations.

Almost 20 years ago Daphne Koller
of Stanford University, with David
McAllester and Avi Pfeffer, examined
the prospects for a probabilistic pro-
gramming language and showed that
programs could be well behaved, run-
ning with acceptable efficiency and ter-
minating reliably with correct answers.
A few years later Pfeffer designed and
implemented a working probabilistic
language called IBAL, then later cre-
ated another named Figaro.

The movement toward PPLs has
gathered momentum in the past five
years or so. Interest was fortified in
2013 when the U.S. Defense Advanced
Research Projects Agency announced
a four-year project funding work on
Probabilistic Programming for Advanc-
ing Machine Learning. At least a dozen

new projects have sprouted up. Here
are thumbnail sketches of three of them.

WebPPL was created by Noah Good-
man (a member of the Church collabo-
ration) and Andreas Stuhlmüller, both
now of Stanford University. Like the
Web version of Church, it is a language
anyone can play with in a browser win-
dow, but its roots in Web technology
are even deeper: The base language is
JavaScript, which every modern brows-
er has built in. An online tutorial, The
Design and Implementation of Probabilistic
Programming Languages (http://dippl.
org), introduces the language.

Stan—which is named for Stanislaw
Ulam—comes from the world of statis-
tics. The developers are Bob Carpenter,
Andrew Gelman, and a large group of
collaborators at Columbia University.
Unlike many other PPLs, Stan is not
just a research study or a pedagogical
exercise but an attempt to build a useful
and practical software system. The proj-
ect’s website (http://mc-stan.org) lists
two dozen papers reporting on uses
of the language in biology, medicine,
linguistics, and other fields.

Meanwhile, some members of the
Church group at MIT have moved on
to a newer language called Venture,
which aims to be more robust and pro-
vide a broader selection of inference
algorithms, as well as facilities allow-
ing the programmer to specify new
inference strategies.

Into the Mainstream?
The computing community has a long
tradition of augmenting programming
languages with higher-level tools, ab-
sorbing into the language tasks that
would otherwise be the responsibility
of the programmer. For example, doing
arithmetic with matrices involves writ-
ing fiddly routines to comb through the
rows and columns. In programming
languages that come pre-equipped with
those algorithms, multiplying matrices
is just a matter of typing A ∗ B. Perhaps
multiplying probability distributions
will someday be just as routine.

However, PPLs add much more
than a new data type. Algorithms for
probabilistic inference are more complex
than most built-in language facilities,
and it’s not clear that they can be made
to run efficiently and correctly over a
broad range of inputs without manual
intervention. One precedent for building
such intricate machinery into a language
is Prolog, a “logic language” that caused
much excitement circa 1980. The Pro-

log programmer does not specify algo-
rithms but states facts and rules of infer-
ence; the language system then applies
a built-in mechanism called resolution
to deduce consequences of the input.
Prolog has not disappeared, but neither
has it moved into the mainstream of
computing. It’s too soon to tell whether
probabilistic programming will become
a utility everyone takes for granted, like
matrix multiplication, or will remain a
niche interest, like logic programming.

Some of the algorithms embedded in
PPLs may also be embedded in people.
Probabilistic reasoning is part of how
we make sense of the world: We predict
what will probably happen next and
we assign probable causes to what we
observe. Most of this mental activity
lies somewhere below the level of con-
sciousness, and we don’t necessarily
know how we do it. Getting a clearer
picture of these cognitive mechanisms
was one of the original motivations
for studying PPLs. Ironically, though,
when we write PPL programs to do
probabilistic inference, most of us won’t
know how the programs do it either.

Bibliography
Eckhardt, R. 1987. Stan Ulam, John von Neu-

mann, and the Monte Carlo method. Los
Alamos Science 15:131–137.

Goodman, N. D. 2013. The principles and
practice of probabilistic programming.
In Proceedings of the 40th ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages (POPL 13), pp. 399–402.

Goodman, N. D., V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum. 2008.
Church: A language for generative models.
In Proceedings of the 24th Conference on Un-
certainty in Artificial Intelligence, pp. 220–229.

Goodman, N. D., and A. Stuhlmüller. 2015.
The Design and Implementation of Probabilistic
Programming Languages. Online document:
http://dippl.org.

Goodman, N. D., and J. B. Tenenbaum. 2015.
Probabilistic Models of Cognition. Online doc-
ument: https://probmods.org.

Koller, D., D. McAllester, and A. Pfeffer. 1997.
Effective Bayesian inference for stochastic
programs. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence
(AAAI-97), pp. 740–747.

Mansinghka, V., D. Selsam, and Y. Perov. 2014
preprint. Venture: A higher-order probabi-
listic programming platform with program-
mable inference. arXiv:1404.0099v1.

Mumford, D. 1999. The dawning of the age
of stochasticity. In Mathematics: Frontiers
and Perspectives. Providence, R.I.: American
Mathematical Society, pp. 197–217.

Pfeffer, A. 2001. IBAL: A probabilistic rational
programming language. In Proceedings of
the International Joint Conference on Artificial
Intelligence 2001, pp. 733–740.

Stan Development Team. 2014. Stan Modeling
Language Users Guide and Reference Manual,
Version 2.5.0. http://mc-stan.org/

