
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by 
electronic mail to bhayes@amsci.org. 



326     American Scientist, Volume 103 © 2015 Brian Hayes. Reproduction with permission only. 
Contact bhayes@amsci.org.

Randomness and probability 
are deeply rooted in modern 
habits of thought. We meet 
probabilities in the daily 

weather forecast and measures of un-
certainty in opinion polls; statistical 
inference is central to all the sciences. 
Then there’s the ineluctable random-
ness of quantum physics. We live in 
the Age of Stochasticity, says David 
Mumford, a mathematician at Brown 
University.

Ours is also an age dominated by de-
terministic machines—namely, digital 
computers—whose logic and arithmetic 
leave nothing to chance. In digital cir-
cuitry strict causality is the rule: Given 
the same initial state and the same in-
puts, the machine will always produce 
the same outputs. As Einstein might 
have said, computers don’t play dice.

But in fact they do! Probabilistic algo-
rithms, which make random choices at 
various points in their execution, have 
long been essential tools in simulation, 
optimization, cryptography, number 
theory, and statistics. How is random-
ness smuggled into a deterministic de-
vice? Although computers cannot cre-
ate randomness de novo, they can take 
a smidgen of disorder from an external 
source and amplify it to produce copi-
ous streams of pseudorandom numbers. 
As the name suggests, these numbers 
are not truly random, but they work 
well enough to fool most probabilistic 
algorithms. (In other words, computers 
not only play dice, they also cheat.)

A recent innovation weaves ran-
domness even more deeply into the 

fabric of computer programming. The 
idea is to create a probabilistic pro-
gramming language (often abbrevi-
ated PPL and sometimes pronounced 
“people”). In a language of this kind, 
random variables and probability dis-
tributions are first-class citizens, with 
the same rights and privileges as oth-
er data types. Furthermore, statistical 
inference—the essential step in teas-
ing meaning out of data—is a basic, 
built-in operation. 

Most of the probabilistic languages 
are still experimental, and it’s unclear 
whether they will be widely adopted 
and prove effective in handling large-
scale problems. But they have already 
provided an intriguing new medium 
for expressing probabilistic ideas and 
algorithms.

Counting vs. Sampling
Suppose you throw three standard 
dice, colored red, green, and blue for 
ease of identification. What are the 
chances of scoring a 9? No less a lumi-
nary than Galileo Galilei took up this 
question 400 years ago—and got the 
right answer! His method was enu-
meration, or counting all the cases. 
Each die can land in six ways, so the 
number of combinations is 63, or 216. If 
the dice are fair, all these outcomes are 
equally likely. Go through the table of 
216 combinations and check off those 
with a sum of 9. You’ll find there are 25 
of them, giving a probability of 25⁄216, or 
11.6 percent.

Another way to answer the same 
question is simply to run the experi-
ment: Roll the dice a few million times 
and see what happens. This sampling 
procedure is easier with computer-
simulated dice than with real ones 
(an option unavailable to Galileo). 

In 216 million simulated rolls I got 
24,998,922 scores of 9, for a probability 
within 0.01 percent of the true value.

Enumeration is often taken as the 
gold standard for probability calcu-
lations. It has the admirable virtue of 
exactness; it is also deterministic and 
repeatable, whereas sampling gives 
only approximate answers that may 
be different every time. But sampling 
also has its defenders. They argue that 
randomized sampling offers a closer 
connection to the way nature actually 
works; after all, we never see the ideal-
ized, exact probabilities in any finite 
experiment.

In the end, these philosophical quib-
bles are usually swept aside by practi-
cal constraints: Enumerating all pos-
sible outcomes is not always feasible. 
You can do it with a handful of dice, 
but you can’t list all possible sequences 
of English words or all possible arrays 
of pixels in an image. When it comes 
to exploring these huge search spaces, 
sampling is the only choice.

The size of the solution space is not 
the only challenge in solving probabil-
ity problems; another factor is the com-
plexity of the questions being asked. 
You may need to estimate joint prob-
abilities (how often do x and y occur 
together?) or conditional probabilities 
(how likely is x, given that y is ob-
served?). The most interesting queries 
are often matters of inference, where 
the aim is to reason “backwards” from 
observed effects to unknown causes. 
In medical diagnosis, for example, the 
physician records a set of symptoms 
and must identify the underlying dis-
ease. The conclusion depends not only 
on the probability that a disease will 
give rise to the observed symptoms but 
also on the probability of the disease 
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itself in the population. (The formal 
statement of this principle is known as 
Bayes’ rule. It’s also implicit in an old 
saying among diagnosticians: Uncom-
mon presentations of common diseases 
are more common than common pre-
sentations of uncommon diseases.)

A Random Walk in Monte Carlo
The idea of solving probability prob-
lems by running computer experi-
ments had its genesis at the Los Ala-
mos laboratory soon after World War 
II. The mathematician Stanislaw Ulam 
was playing solitaire while recuperat-
ing from an illness and tried to work 
out the probability that a random deal 
of the cards would yield a winning 
position.

After spending a lot of time try-
ing to estimate [the probability] 
by pure combinatorial calcula-
tions, I wondered whether a more 
practical method than “abstract 
thinking” might not be to lay it 
out say one hundred times and 
simply observe and count the 
number of successful plays. This 
was already possible to envisage 
with the beginning of the new era 
of fast computers . . .

Ulam’s technique was named the 
Monte Carlo method, after the famous 
randomizing devices in that Mediter-
ranean capital. In 1948 the scheme was 
put to work on a graver task than solv-
ing solitaire. A program running on the 
ENIAC, the early vacuum tube com-
puter, calculated the probability that a 
neutron moving through a cylinder of 
uranium or plutonium would be ab-
sorbed by a fissionable nucleus before 
wandering away. (I don’t know if Ulam 
ever got back to the solitaire problem.)

The most basic algorithm for sam-
pling is straightforward: Just make 
repeated trials and tally the results. 
Where the process gets dicey (so to 
speak) is with conditional probabili-
ties. Suppose you want to know the 
probability of rolling a 14 with three 
dice, on the condition that at least two 
of the dice display the same number. 
The simplest approach to such a prob-
lem is called rejection sampling. The pro-
gram simulates many rolls of the dice 
and discards cases in which the three 
dice are all different. This procedure is 
clearly correct; it follows directly from 
the definition of conditional probabil-
ity. For the dice problem it works fine, 
but it becomes woefully inefficient for 

studying rare phenomena. The pro-
gram spends most of its time generat-
ing events that it immediately throws 
away. Think of trying to stumble on 
meaningful English sentences by as-
sembling random sequences of words.

Ideally, we would like to generate 
only “successes”—states that satisfy the 
imposed condition—without wasting 
time on the failures. That goal is not 
always attainable, but a family of tech-
niques known as Markov chain Monte 
Carlo (MCMC) can often get much 
closer than rejection sampling. The ba-
sic idea is to construct a random walk 
that visits each state in proportion to its 
probability in the observed distribution.

Let’s take a walk through some 
states of the two-or-more-equal dice 
game. Assume a roll of the dice comes 
up red = 2, green = 2, blue = 3, which for 
brevity we can denote 223. This combi-
nation satisfies the two-or-more-equal 
condition, so we write it down as the 
initial state of the system. Now, instead 
of picking up all three dice and throw-
ing them again, choose one die at ran-
dom and roll that one alone, leaving 
the others undisturbed. If the result 
is a state that satisfies the condition, 
note it down as the next state. If not, 
return to the previous state and write 
that down as the second state as well. 
Continue by choosing another die at 
random and repeat the procedure. A 
sequence of states might run 223, 323, 
323, 343, 443, 444 . . . 

This “chain” of states eventually 
reaches all combinations that meet the 
two-or-more-equal criterion. In the 
long run, moreover, the states in the 
random walk have the same probabil-
ity distribution as the one produced 
by rejection sampling. In subtler ways, 
however, the MCMC sequence is not 
quite random. Nearby elements are 
closely correlated: 223 can make an 
immediate transition to 233 but not 
to 556. The remedy is to collect only 
every nth state, with a value of n large 
enough to let the correlations fade 
away. This policy imposes an n-fold 
penalty in efficiency, but in many cases 
MCMC still beats rejection sampling.

A Language Called Church
Monte Carlo simulations and other 
probabilistic models can be written in 
any programming language that offers 
access to a pseudorandom number gen-
erator. What a PPL offers is an environ-
ment where probabilistic concepts can 
be expressed naturally and concisely, 
and where procedures for computing 
with probabilities are built into the in-
frastructure of the language. Variables 
can represent not just ordinary num-
bers but entire probability distribu-
tions. There are tools for building such 
distributions, for combining them, for 
imposing constraints on them, and for 
making inquiries about their content.

A PPL called Church illustrates these 
ideas. Church was created by Noah D. 
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sum of three dice

The 216 possible outcomes of rolling three 
dice stack up to form an approximation to the 
normal bell curve. The snippet of computer 
code at left, written in a programming lan-
guage called Church, gives the probability 
of each three-die sum from 3 to 18. Church 
is one of a new generation of languages de-
signed to model probabilistic reasoning.

(define (roll-die) 
  (uniform-draw '(1 2 3 4 5 6)))

(enumeration-query
 (define r (roll-die))
 (define g (roll-die))
 (define b (roll-die))
 (+ r g b))
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Goodman, Vikash K. Mansinghka, Dan-
iel M. Roy, Keith Bonawitz, and Joshua 
B. Tenenbaum when they were all at 
MIT. Goodman and Tenenbaum’s on-
line book, Probabilistic Models of Cognition 
(https://probmods.org), provides an en-
grossing introduction to Church and to 
probabilistic programming in general. 
Readers can modify and run programs 
directly in the book’s Web interface.

Church is named for Alonzo Church, 
an early 20th–century logician who de-
veloped a model of computation called 
the lambda calculus. The Church lan-
guage is built atop Scheme, a dialect of 
the Lisp programming language that 
has deep roots in the lambda calculus. 
Like other variants of Lisp, Church sur-
rounds all expressions with parentheses 
and adopts a “prefix” notation, writing 
(+ 1 2) instead of 1 + 2.

Here is the Church procedure for 
rolling a single die:

(define (roll-die)
  (uniform-draw '(1 2 3 4 5 6)))

When this function is executed, it re-
turns a single number chosen uniform-
ly at random from the list shown. In the 
larger context of a probabilistic query, 
however, the result of the roll-die 

procedure can represent a distribution 
over all the numbers in the list.

The query expression below has 
three parts: first a list of define state-
ments, creating a model of a probabi-
listic process; second the expression 
that will become the subject of the 
query (in this case simply the variable 
g); and finally a condition imposed on 
the outcome:

(enumeration-query
  (define r (roll-die)) 
  (define g (roll-die)) 
  (define b (roll-die))
  (define score (+ r g b))
  g
  (condition (> score 13)))

Again we are rolling three simulated 
dice, designated r, g, and b. The query 
computes the probability distribution 
of g subject to the condition that the 
sum of r, g, and b is greater than 13. 
The result of running the query is a list 
giving the possible values of g (2, 3, 4, 
5, 6) and their probabilities (ranging 
from 0.029 to 0.429).

The keyword enumeration-query in 
this program signals that it counts all 
cases and returns exact results. Substi-
tuting the keyword rejection-query 
produces what you would expect: a 

sampling from the same distribution, 
performed by discarding cases that fail 
to satisfy the greater-than-13 condi-
tion. A third option is the keyword mh-
query, which invokes a Markov chain 
Monte Carlo algorithm. (The initials mh 
stand for Metropolis-Hastings; Nicho-
las Metropolis was a member of the 
early Monte Carlo community at Los 
Alamos and W. Keith Hastings is a Ca-
nadian statistician.)

Behind the Curtain
The query expressions of Church spec-
ify what is to be computed but not how; 
all the algorithmic magic happens be-
hind the curtains. That’s part of the 
point of a PPL—to allow the program-
mer to work at a higher level of ab-
straction, without being distracted by 
details of counting cases or collecting 
samples. Those details still have to be 
attended to, but the necessary code is 
written by the implementer of the lan-
guage rather than the user of it.

Embedding such technology inside 
a programming language requires 
algorithms general enough that they 
work in a variety of problem do-
mains, from playing dice to follow-
ing neutrons to recognizing faces in 
images. MCMC simulations often ex-
ploit specific features of the problem 
definition, but a PPL must somehow 
construct a random walk through 
the solution space without knowing 
anything about the nature of the indi-
vidual states. The strategy adopted in 
Church is to regard all possible execu-
tion paths of the program itself as the 
elements of the solution space. Each 
random choice in the program estab-
lishes a new branch point in the net-
work of execution paths. The Church 
MCMC algorithm works by altering 
one of those choices and checking to 
see if the new output still satisfies any 
conditions imposed on the model.

The generic MCMC algorithm is not 
quite foolproof. Consider another varia-
tion on the dice game with a slightly 
different condition: not (> score 13) 
but (= score 13). That is, we want to 
find the distribution of values of the 
green die when the sum of the three 
dice is exactly 13. The Church program 
for this task works fine with an enu-
meration query or a rejection query, but 
the MCMC program fails. The reason 
is that the algorithm always proposes 
to alter the value of a single die, an ac-
tion that cannot leave the sum of the 
three dice unchanged; thus none of the 
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Imposing a condition on the dice game—requiring at least two dice to show the same value—
yields a probability distribution quite different from the normal curve. (Be careful if you’re bet-
ting on this game.) The Church program above computes the distribution by rejection sampling, 
in which cases that fail to satisfy the condition are discarded. Variants of the same program use 
enumeration or Markov chain Monte Carlo (MCMC) sampling. The graph shows all three results.

(rejection-query
  (define r (roll-die)) (define g (roll-die)) (define b (roll-die))
  (define s (+ r g b))

  s

  (condition (or (= r g) (= r b) (= g b)))))
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proposals are ever accepted. There are 
work-arounds for this problem, such 
as defining a “noisy equal” operator 
that occasionally judges two numbers 
to be equal even when they’re not. But 
the need to understand the cause of the 
failure and take steps to correct it sug-
gests we have not yet reached the stage 
where we can blithely hand off proba-
bilistic models to an automated solver.

Sprouting Languages
PPLs are not the only approach to 
computing with probabilities. The 
main alternatives are graphical mod-
els, in which networks of nodes are 
connected by lines called edges. Each 
node represents a random variable 
along with its probability distribution; 
an edge runs between two nodes if one 
variable depends on the other. For ex-
ample, a network for a model of three 
dice might look like this: 

r g

sum

b

Information flows from each of the 
dice to the sum, but not between the 
dice because they are independent.

Advocates of PPLs suggest at least 
two reasons for favoring a linguistic 
over a graphical representation. First, 
certain concepts are easier to encode 
in a language than in a diagram; an 
important example is recursion, where 
a program invokes itself. Second, over 
the entire history of digital computers, 
programming languages have proved 
to be the most versatile and expressive 
means of describing computations.

Almost 20 years ago Daphne Koller 
of Stanford University, with David 
McAllester and Avi Pfeffer, examined 
the prospects for a probabilistic pro-
gramming language and showed that 
programs could be well behaved, run-
ning with acceptable efficiency and ter-
minating reliably with correct answers. 
A few years later Pfeffer designed and 
implemented a working probabilistic 
language called IBAL, then later cre-
ated another named Figaro.

The movement toward PPLs has 
gathered momentum in the past five 
years or so. Interest was fortified in 
2013 when the U.S. Defense Advanced 
Research Projects Agency announced 
a four-year project funding work on 
Probabilistic Programming for Advanc-
ing Machine Learning. At least a dozen 

new projects have sprouted up. Here 
are thumbnail sketches of three of them. 

WebPPL was created by Noah Good-
man (a member of the Church collabo-
ration) and Andreas Stuhlmüller, both 
now of Stanford University. Like the 
Web version of Church, it is a language 
anyone can play with in a browser win-
dow, but its roots in Web technology 
are even deeper: The base language is 
JavaScript, which every modern brows-
er has built in. An online tutorial, The 
Design and Implementation of Probabilistic 
Programming Languages (http://dippl.
org), introduces the language. 

Stan—which is named for Stanislaw 
Ulam—comes from the world of statis-
tics. The developers are Bob Carpenter, 
Andrew Gelman, and a large group of 
collaborators at Columbia University. 
Unlike many other PPLs, Stan is not 
just a research study or a pedagogical 
exercise but an attempt to build a useful 
and practical software system. The proj-
ect’s website (http://mc-stan.org) lists 
two dozen papers reporting on uses 
of the language in biology, medicine, 
linguistics, and other fields.

Meanwhile, some members of the 
Church group at MIT have moved on 
to a newer language called Venture, 
which aims to be more robust and pro-
vide a broader selection of inference 
algorithms, as well as facilities allow-
ing the programmer to specify new 
inference strategies.

Into the Mainstream?
The computing community has a long 
tradition of augmenting programming 
languages with higher-level tools, ab-
sorbing into the language tasks that 
would otherwise be the responsibility 
of the programmer. For example, doing 
arithmetic with matrices involves writ-
ing fiddly routines to comb through the 
rows and columns. In programming 
languages that come pre-equipped with 
those algorithms, multiplying matrices 
is just a matter of typing A ∗ B. Perhaps 
multiplying probability distributions 
will someday be just as routine.

However, PPLs add much more 
than a new data type. Algorithms for 
probabilistic inference are more complex 
than most built-in language facilities, 
and it’s not clear that they can be made 
to run efficiently and correctly over a 
broad range of inputs without manual 
intervention. One precedent for building 
such intricate machinery into a language 
is Prolog, a “logic language” that caused 
much excitement circa 1980. The Pro-

log programmer does not specify algo-
rithms but states facts and rules of infer-
ence; the language system then applies 
a built-in mechanism called resolution 
to deduce consequences of the input. 
Prolog has not disappeared, but neither 
has it moved into the mainstream of 
computing. It’s too soon to tell whether 
probabilistic programming will become 
a utility everyone takes for granted, like 
matrix multiplication, or will remain a 
niche interest, like logic programming.

Some of the algorithms embedded in 
PPLs may also be embedded in people. 
Probabilistic reasoning is part of how 
we make sense of the world: We predict 
what will probably happen next and 
we assign probable causes to what we 
observe. Most of this mental activity 
lies somewhere below the level of con-
sciousness, and we don’t necessarily 
know how we do it. Getting a clearer 
picture of these cognitive mechanisms 
was one of the original motivations 
for studying PPLs. Ironically, though, 
when we write PPL programs to do 
probabilistic inference, most of us won’t 
know how the programs do it either.
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