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Kim studies parallel algo-
rithms, designed for comput-
ers with thousands of proces-
sors. Chris builds computer 

simulations of fluids in motion, such as 
ocean currents. Dana creates software 
for visualizing geographic data. These 
three people have much in common. 
Computing is an essential part of their 
professional lives; they all spend time 
writing, testing, and debugging com-
puter programs. They probably rely on 
many of the same tools, such as soft-
ware for editing program text. If you 
were to look over their shoulders as 
they worked on their code, you might 
not be able to tell who was who. 

Despite the similarities, however, 
Kim, Chris, and Dana were trained 
in different disciplines, and they be-
long to different intellectual traditions 
and communities. Kim, the parallel 
algorithms specialist, is a professor in 
a university department of computer 
science. Chris, the fluids modeler, also 
lives in the academic world, but she is 
a physicist by training; sometimes she 
describes herself as a computational 
scientist (which is not the same thing 
as a computer scientist). Dana has been 
programming since junior high school 
but didn’t study computing in col-
lege; at the startup company where he 
works, his title is software developer.  

These factional divisions run deeper 
than mere specializations. Kim, Chris, 
and Dana belong to different profes-
sional societies, go to different confer-
ences, read different publications; their 
paths seldom cross. They represent 

different cultures. The resulting Bal-
kanization of computing seems unwise 
and unhealthy, a recipe for reinventing 
wheels and making the same mistake 
three times over. Calls for unification go 
back at least 45 years, but the estrange-
ment continues. As a student and ad-
mirer of all three fields, I find the stand-
off deeply frustrating.

Certain areas of computation are go-
ing through a period of extraordinary 
vigor and innovation. Machine learn-
ing, data analysis, and programming 
for the web have all made huge strides. 
Problems that stumped earlier genera-
tions, such as image recognition, finally 
seem to be yielding to new efforts. The 
successes have drawn more young peo-
ple into the field; suddenly, everyone 
is “learning to code.” I am cheered by 
(and I cheer for) all these events, but I 
also want to whisper a question: Will 
the wave of excitement ever reach other 
corners of the computing universe?

Setting Agendas
What’s the difference between com-
puter science, computational science, 
and software development?

When Kim the computer scientist 
writes a program, her aim is to learn 
something about the underlying algo-
rithm. The object of study in computer 
science is the computing process itself, 
detached from any particular hardware 
or software. When Kim publishes her 
conclusions, they will be formulated in 
terms of an idealized, abstract comput-
ing machine. Indeed, the more theoreti-
cal aspects of her work could be done 
without any access to actual computers.

When Chris the computational sci-
entist writes a program, the goal is to 
simulate the behavior of some physi-
cal system. For her, the computer is 

not an object of study but a scientific 
instrument, a device for answering 
questions about the natural world. 
Running a program is directly analo-
gous to conducting an experiment, 
and the output of the program is the 
result of the experiment. 

When Dana the developer writes 
a program, the program itself is the 
product of his labors. The software he 
creates is meant to be a useful tool for 
colleagues or customers—an artifact of 
tangible value. Dana’s programming 
is not science but art or craft or engi-
neering. It is all about making things, 
not answering questions.

Should these three activities be treat-
ed as separate fields of endeavor, or are 
they really just subdivisions of a single 
computing enterprise? The historian 
Michael Mahoney, an astute observer 
of computing communities, suggested 
that a key concept for addressing such 
questions is the “agenda.” 

The agenda of a field consists of 
what its practitioners agree ought 
to be done, a consensus concern-
ing the problems of the field, their 
order of importance or priority, 
the means of solving them (the 
tools of the trade), and perhaps 
most importantly, what constitutes 
a solution…. The standing of the 
field may be measured by its ca-
pacity to set its own agenda. New 
disciplines emerge by acquiring 
that autonomy. Conflicts within a 
discipline often come down to dis-
agreements over the agenda: what 
are the really important problems?

The issue, then, is whether Kim, 
Chris, and Dana set their own agen-
das, or whether each of them has 
merely chosen to concentrate on se-

Cultures of Code
Three communities in the world of computation are bound together by common 
interests but set apart by distinctly different aims and agendas.

Brian Hayes

Brian Hayes is senior writer for American Scien-
tist. Additional material related to the Comput-
ing Science column can be found online at http://
bit-player.org. E-mail: brian@bit-player.org

Computing 
Science



2015     January–February     11www.americanscientist.org © 2015 Brian Hayes. Reproduction with permission only. 
Contact bhayes@amsci.org.

lected parts of a shared agenda. There 
are certainly questions that would in-
terest all three of them. A prominent 
example is “What can be computed 
efficiently?” Theoretical computer sci-
ence seizes on this question as one of 
its most central, existential concerns, 
but the answer also matters to those 
who write and run programs for prac-
tical purposes. Thus the three groups 
might seem to stand on common 
ground. The trouble is, a theorist’s an-
swer to the question may not be much 
use to a practical programmer. Know-
ing that the worst-case running time 
grows as some polynomial function of 
the problem size doesn’t actually tell 
you whether a specific computation 
will take seconds or centuries.

The issue here is not that all comput-
er scientists are otherworldly theorists. 
Sometimes the theoretical challenges 
arise elsewhere. As a fluid dynamicist, 
Chris has on her agenda the tricky 
theoretical problem of partitioning a 
continuous fluid into discrete parcels 
suitable for processing by a digital com-
puter. Solutions to such problems have 
come mainly from mathematicians, 
engineers, and physicists rather than 
computer scientists.

One of the glories of computer sci-
ence in its early years was a deep 
analysis of programming languages. 
Everyone who does computing would 
seem to have a stake in this work. In an 
interesting collaboration between com-
puter scientists, mathematicians, and 
linguists, the languages were classified 

according to their expressive power. 
The next project was to devise algo-
rithms for parsing programs—break-
ing statements down into their basic 
grammatical units—and then assigning 
meaning to the statements. Most of this 
work was completed by the 1970s.

Programmers today are intensely 
partisan in their choices of program-
ming languages, yet interest in the 
underlying principles seems to have 
waned. Two years ago I attended a 
lunch-table talk by a young graduate 
student who had turned away from hu-
manities and business studies to take 
up a new life designing software. She 
had fallen in love with coding, and she 
spoke eloquently of its attractions and 
rewards. But she also took a swipe at 
the traditional computer science curric-
ulum. “No one cares much about LR(1) 
parsers anymore,” she said, referring 
to one of the classic tools of language 
processing. The remark saddened me 
because the theory of parsing is a thing 
of beauty. At the very least it is a histori-
cal landmark that no one should pass 
by without stopping to read the plaque. 
But, as Edith Wharton wrote, “Life has 
a way of overgrowing its achievements 
as well as its ruins.”

Roots of Computing
Schisms in the computing community 
can be traced back all the way to the 
beginning of the digital electronic era, 
circa 1950. The designers of the early 
machines, such as the ENIAC in the 
United States and the EDSAC in Brit-

ain, wove together ideas from sources 
that must have seemed unlikely bedfel-
lows. Basic notions of how to “mecha-
nize thought” came from mathematical 
logic, including the 19th-century work 
of George Boole on a form of algebra 
in which the elements are not numbers 
but the values true and false. Electrical 
engineering, and in particular switch-
ing theory, provided circuits that imple-
ment Boolean operations in hardware.

Mathematical logic became one of 
the seed pearls on which theoretical 
computer science grew. Circuit theory 
also remains a core component of com-
puter science and engineering. Indeed, 
the design and manufacture of hard-
ware represents yet another indepen-
dent computing culture.

Alongside mathematical logic and 
electrical circuits, there was a third tra-
dition present at the birth of modern 
computing. The users of those first 
high-speed computing machines came 
mainly from applied mathematics and 
closely allied areas such as physics. 
Prominent among the users were table-
makers, who compiled tables of loga-
rithms, trigonometric functions, and all 
sorts of other quantitative information. 
(The ostensible reason for building the 
ENIAC was to compile ballistic tables 
for artillery.) Another important con-
stituency among the users were the nu-
merical analysts, who devise schemes 
for finding approximate solutions to 
equations that cannot be solved ex-
actly. Most of the interesting problems 
in the sciences fit this description. For 
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 productivity.

Learn what features make programming
 languages more expressive.

Communities that share an interest in computing but have distinct goals 
can be distinguished by their agendas: the lists of problems to solve and 
tasks to accomplish that members of each community agree on. The idea 

of defining a community by its agenda was introduced by the historian 
Michael Mahoney. Shown here are some possible to-do items for com-
puter science, computational science, and software development. 
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the tablemakers and the numerical an-
alysts, the electronic computer was a 
problem-solving or question-answering 
tool; the heirs of these pioneers are to-
day’s computational scientists.

Notably absent from the planning for 
early computer projects was any seri-
ous discussion of programming. For 
each problem to be solved, a mathema-
tician or other professional was expect-
ed to design the scheme of computa-
tion, perhaps in the form of a flow chart 
annotated with equations. Translating 
this plan into instructions suitable for 
the machine was viewed as a routine 
clerical task, requiring no intellectual 
engagement with the underlying ideas. 
In the case of the ENIAC, six women 
were recruited as “coders” to do this 
work. Three of the six had majored in 
mathematics in college, and all of them 
were absurdly overqualified for clerical 

duties. As it turned out, their qualifi-
cations were put to the test, because 
the work of preparing programs for the 
machine was anything but routine.

The discovery that programming 
presents serious intellectual challenges 
apparently came as a surprise to the 
early leaders of the field. Maurice V. 
Wilkes, the principal architect of the 
EDSAC, had an epiphany while writ-
ing the first substantial program for 
that machine in 1949:

The EDSAC was on the top floor 
of the building and the tape-
punching and editing equipment 
one floor below.… It was on one of 
my journeys between the EDSAC 
room and the punching equip-
ment that … the realization came 
over me with full force that a good 
part of the remainder of my life 
was going to be spent in finding 
errors in my own programs.

Recognizing that programming 
requires skill and ingenuity elevated 
the status of the occupation. Unfortu-
nately, not everyone benefited from 
this upgrade. Women who had pio-

neered in the art of programming were 
largely displaced by men—an issue 
the profession is still dealing with 60 
years later.

Silver Bullets
By the time computers were being 
manufactured for commercial use, pro-
gramming was recognized as a costly 
bottleneck. The work was tedious and 
slow; people good at it were hard to 
find; even the most talented and dedi-
cated programmers made mistakes. 
Programming projects became notori-
ous for running over budget and be-
hind schedule. Progress in computing 
was threatened by a “software crisis.”

The subsequent history of program-
ming methodology can be read as an 
extended campaign to slay this drag-
on. Higher-level programming lan-
guages—closer to the vocabulary of 

the problem domain, further from the 
minutiae of the hardware—were the 
first weapon, and the most effective 
one. A regimen called structured pro-
gramming tried to untangle the logic 
of programs by allowing only a few 
kinds of loops and branches. Under the 
banner of modularity, programs were 
to be assembled out of pretested, reus-
able units. Another movement called 
for formal proofs of program correct-
ness. More slogans paraded by: ab-
straction, encapsulation, declarative 
programming, functional program-
ming, object-oriented programming, 
design patterns, test-driven develop-
ment,  agile development. The sheer va-
riety of these remedies is a hint that no 
one of them was a cure-all. Even now 
the software crisis is still with us: Wit-
ness the debacle of the Healthcare.gov  
website in 2013.

The debate over software quality 
has included repeated calls to make 
programming a proper engineering 
discipline, with recognized standards 
of proficiency and perhaps require-
ments for certification or licensing. A 
related trend imposed more manage-

ment structure on the programming 
process. In the software shops of the 
1960s and ’70s, the way to get ahead 
was to rise above the actual writing of 
code and become a system analyst or 
architect.

At the same time, however, anoth-
er strand of computing culture—or  
counterculture—was moving in the 
opposite direction. The enthusiasts 
who called themselves hackers, most 
famously situated at MIT among mem-
bers of the Tech Model Railroad Club, 
saw computer programming as a puz-
zle to be solved, a world to explore, a 
medium of self-expression. They saw 
it as fun. They resisted the idea that 
only an elite with engineering creden-
tials would be allowed access to the 
machinery. The notion that program-
ming could be regulated or restricted 
was further undermined when person-
al computers became widely available 
and affordable in the 1980s.

Coding Is Cool Again
Another wave of irrepressible hacker 
enthusiasm is washing over us now, 
as a new generation discovers that 
coding is cool. Introductory program-
ming courses, which had disappeared 
from many college curricula, now at-
tract hundreds of students. At Har-
vard, for example, a hands-on pro-
gramming course called CS50 has an 
enrollment of almost 900, the largest 
in the entire university. Online cours-
es engage millions more. And a group 
called code.org is working to revive 
the study of computing in elementary 
and secondary schools.

Why this sudden infatuation with 
the nerdy side of life? Fad and fashion 
doubtless play a part. So does the pros-
pect of creating the next billion-dollar 
app. And there’s always excitement 
in joining your generation’s mission 
to change the world. Beyond all that, 
I would cite one more factor. Within 
the past five years, programming tools 
have crossed a threshold of accessibil-
ity and power. It’s not that we have fi-
nally found the magic elixir that makes 
programming easy and error-free. The 
learning curve is still steep. But the 
view from the top of the hill is spectacu-
lar. The same investment of effort that 
once printed the words “Hello, world” 
on the computer screen now brings the 
world itself to that screen.

In 1984 I saw a demo of a mapping 
program created by Michael Lesk and 
his colleagues at AT&T Bell Labs. The 

The investment of effort that once printed 
“Hello, world” on the computer screen now 

brings the world itself to that screen. 
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graphics were crude by modern stan-
dards, but the program could answer 
geographic queries and recommend 
routes from point to point in the New 
York area. I was wowed.

A key innovation in Lesk’s program 
was storing the terrain map in small 
square tiles that could be loaded into 
memory as needed. Twenty years lat-
er, Google Maps employed the same 
principle (with better graphics) to 
create the illusion that the computer 
screen is a window onto a vast unfurl-
ing map of the whole planet. New 
tiles are fetched over the network 
whenever you move the window or 
zoom in and out. I was wowed again.

Google Maps was state-of-the-art 
wizardry in 2005; in 2015 anyone can 
do it. With a dozen lines of code—plus 
an open-source library called Leaflet 
and a free web service that supplies the 
map tiles—you can create your own 
mapping program, offering the viewer 
the same breathtaking window-on-the-
world experience.

The grizzled curmudgeon in me 
wants to object that this instant car-
tography is not real programming, it’s 
just a “mashup” of prefabricated pro-
gram modules and Internet resources. 
But building atop the achievements 
of others is exactly how science and 
engineering are supposed to advance.

Still, a worry remains. How will the 
members of this exuberant new cohort 
distribute themselves over the three 
continents of computer science, com-
putational science, and software devel-
opment? What tasks will they put on 
their agendas? At the moment, most of 
the energy flows into the culture of soft-
ware development or programming. 
The excitement is about applying com-
putational methods, not inventing new 
ones or investigating their properties. 
In the long run, though, someone needs 
to care about LR(1) parsers.

Guy Lewis Steele, Jr., one of the orig-
inal MIT hackers, worried in the 1980s 
that hackerdom might be killed off “as 
programming education became more 
formalized.” The present predicament 
is just the opposite. Everyone wants to 
pick up the knack of coding, but the 
more abstract and mathematical con-
cepts at the core of computer science 
attract a smaller audience. The big en-
rollments are in courses on Python, 
Ruby, and JavaScript, not automata 
theory or denotational semantics.

I would not contend that mastery of 
the more theoretical topics is a prereq-

uisite to becoming a good program-
mer. There’s abundant evidence to 
the contrary. But it is a necessary step 
in absorbing the culture of computer 
science. I am sentimental enough to 
believe that an interdisciplinary and 
intergenerational conversation would 
enrich both sides, and help in knitting 
together the communities. 
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