
      A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by 
electronic mail to bhayes@amsci.org. 



338     American Scientist, Volume 101 © 2013 Brian Hayes. Reproduction with permission only. 
Contact bhayes@amsci.org.

My childhood home was 
a stone’s throw away 
from a racial boundary 
line. I lived just outside of 

Philadelphia in an all-white suburb, but 
from my window I could look across a 
creek and a strip of parkland into a city 
neighborhood that was almost entirely 
black. As a boy I never thought to ask 
how my world came to be divided in 
this way, but others were puzzling over 
such questions. One of them was the 
economist Thomas C. Schelling, now of 
the University of Maryland.

In the 1960s Schelling devised a sim-
ple model in which a mixed group of 
people spontaneously segregates by 
race even though no one in the popu-
lation desires that outcome. Initially, 
black and white families are randomly 
distributed. At each step in the model-
ing process the families examine their 
immediate neighborhood and either 
stay put or move elsewhere depend-
ing on whether the local racial com-
position suits their preferences. The 
procedure is repeated until everyone 
finds a satisfactory home (or until the 
simulator’s patience is exhausted).

The outcome of the process depends 
on the families’ preferences. If every-
one is indifferent to race, no one has rea-
son to move. If everyone is absolutely 
intolerant, refusing to live near anyone 
of the other race, then total segregation 
is the only stable solution. Between these 
extremes lies an interesting spectrum of 
nonobvious behavior. Schelling discov-
ered that segregation can emerge among 
residents who have only a mild pref-
erence for living with their own kind: 
They choose not to be in the minority 

within their immediate environment. 
These families would be happy with a 
50–50 milieu, but they wind up forming 
enclaves where about 80 percent of their 
neighbors are of the same race.

Over the years the Schelling model 
has intrigued not just social scientists 
but also mathematicians, physicists, 
and others. Dozens of variants have 
been explored through computer 
simulations. Nevertheless, not much 
about the model could be established 
with mathematical certainty. It was not 
clear how the degree of segregation 
varies as a function of individual intol-
erance, nor was it certain that the sys-
tem would always settle into a stable 
final state. Now two groups of com-
puter scientists, returning to a version 
of the model very similar to the one 
Schelling first described, supply some 
provable, analytic results. Their find-
ings include a few surprises. For ex-
ample, in some cases the segregation 
process is self-limiting: The mono-
chromatic enclaves stop growing at 
a certain size, well before they reach 
the scale of metropolitan apartheid I 
knew in Philadelphia.

Unintended Integration
My introduction to the Schelling segre-
gation model came via programming 
languages designed for simulating 
the interactions of many independent 
agents. For example, the NetLogo sys-
tem, created by Uri Wilensky of North-
western University, includes a demo 
program based on Schelling’s ideas. 
On a square grid of a few thousand 
sites, agents of two colors are scattered 
at random, with a small percentage of 
sites left vacant. An agent is unhappy 
if the proportion of like-colored agents 
on the eight neighboring sites is less 
than some specified threshold τ. On 
each turn, every unhappy agent moves 
to a randomly chosen vacant site. (The 

move is made whether or not it im-
proves the agent’s level of satisfaction.)

The illustration on the opposite 
page shows how the NetLogo model 
evolves for a few values of the intoler-
ance threshold τ. If τ is small (0.25 or 
less), all the agents quickly find a hap-
py home, and the final configuration 
looks much like the initial random one. 
As τ approaches 0.5, the system tends 
to form mottled patterns reminiscent 
of camouflage, made up of oppositely 
colored stripes, blobs, or tentacles. As 
τ increases further the mottled forms 
grow larger, and around τ = 0.75 they 
coalesce into single large regions of 
each color, separated by an insulating 
barrier of vacancies. (Note that the 
square array in NetLogo is actually a 
torus, with the left edge joined to the 
right and the top to the bottom.)

What happens at still higher values 
of τ? The answer surprised me the 
first time I ran the simulation. There is 
much frantic motion, as agents of each 
color try to escape the other, but they 
make no apparent progress toward 
the stable, fully segregated state that 
would satisfy all of them. At any giv-
en moment, a snapshot of the system 
shows that the colors are well mixed. 
Thus, just as lower τ values create seg-
regation that no one wants, the higher 
values lead to integration that every-
one hates.

NetLogo and similar programming 
environments encourage an experi-
mental approach to understanding the 
Schelling model. With these tools it’s 
easy to generate examples and gather 
statistics. It’s not so easy to deduce 
fundamental principles. For example, 
in all the simulations I have run, the 
high-τ agents never find a stationary, 
segregated pattern in which they can 
cease their turmoil, but I am wary of 
generalizing from this observation. If 
the lattice were larger—if the popula-
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tion of agents were allowed to grow to 
infinity—would the probability of seg-
regation tend toward 0 or toward 1? 
I don’t know the answer for the Net-
Logo version of the model, but recent 
work has addressed questions of this 
kind in simpler systems.

Firewalls of Color
When Schelling began his experi-
ments in algorithmic social science, 
he had nothing like NetLogo to play 
with. Indeed, he had no computa-
tional aids at all. His first model was a 
paper-and-pencil affair, where agents 
were represented by plus signs and 
zeros. Furthermore, the model was 
one- dimensional, with the symbols ar-
ranged along a line rather than on a 
plane. And the rules of the game were 
stricter: Agents could move only if 
doing so transformed them from un-
happy to happy; neither neutral nor 
unfavorable moves were allowed.

A paper presented last year at the 
Symposium on the Theory of Com-
puting harks back to the original one-
dimensional Schelling model. The au-
thors are Christina Brandt of Stanford 
University, Nicole Immorlica of the 
Microsoft New England Research Cen-
ter, Gautam Kamath of MIT, and Rob-
ert Kleinberg of Cornell University. For 
convenience I refer to this quartet as 
the BIKK group.

The BIKK model does not match 
Schelling’s first version in every detail, 
but it’s close. N agents are randomly 
assigned to two color groups and ran-
domly arranged along a line. The ends 
of the line are then joined to form a 
ring. There are no vacant sites. Every 
agent surveys a neighborhood that in-
cludes its own site and w sites to the left 
and right, for a total of 2w+1 neighbors. 
The agent is unhappy if the proportion 
of like-colored agents in this interval is 
less than the threshold τ; in the BIKK 
study τ is always equal to 1/2. A move 
consists in swapping two randomly 
chosen unhappy agents of opposite col-
ors. (With τ = 1/2, the swap necessarily 
makes both agents happy.)

The BIKK group proves that this 
system evolves to a “frozen” state, in 
which no more swaps are possible. The 
frozen state is segregated, in the sense 
that most agents find themselves in an 
environment where well over 50 per-
cent of their neighbors are like-colored. 
But the segregation is local rather than 
global. The society breaks down into 
blocks whose size is determined by 

the neighborhood radius w, not by the 
overall population size N. Specifically, 
as w increases, the block size grows no 
faster than w2. (The BIKK group hopes 
to improve on this result, showing that 
the growth rate is no greater than w.) 

Because of the randomness inher-
ent in the Schelling process, the proofs 
have a probabilistic aspect. It’s not 
possible to say that the model will ab-

solutely never yield two giant mono-
chromatic blocks; after all, the random 
initialization of the sites could pro-
duce that state at the outset. But the 
proof shows that as N goes to infinity, 
the probability of such an anomalous 
event approaches zero.

The key idea behind the BIKK analy-
sis is the observation that once a mono-
chromatic run of sites reaches a length 

initial state, τ = 0.25

�nal state, τ = 0.50 �nal state, τ = 0.51

�nal state, τ = 0.75 state after 100,000 iterations, τ = 0.76

�nal state, τ = 0.25

A two-dimensional version of Thomas Schelling’s segregation model places agents of two 
colors in a square array, with a few cells left vacant. An agent is unhappy if the proportion of 
like-colored agents among its eight neighbors is less than an intolerance threshold t. Unhappy 
agents (open circles) move to a vacant site; happy ones (solid disks) stay put. As t increases, the 
agents condense into monochromatic blobs, but beyond t = 0.75 no stable arrangement appears.
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of w+1, none of those agents will ever 
again become unhappy, and so they 
will never move. Such a formation is 
called a firewall, because agents of the 
opposite color cannot go through it. 
The BIKK authors establish upper and 
lower bounds on the frequency of fire-
walls, showing that “for any site on the 
ring, with high probability, the process 
will eventually form firewalls of both 
colors on both sides of the site.” The 
firewalls become the nuclei of the seg-
regated blocks. Because there are a fair 
number of firewalls, they cannot grow 
too big before they run into each other.

Four Behavioral Regimes
The BIKK analysis applies only to the 
case τ = 1/2. Recently a second group 
has filled in details for other values of 
τ. The authors are George Barmpalias 
of the Chinese Academy of Sciences 
and Richard  Elwes and Andy Lewis-
Pye of the University of Leeds in Eng-
land (the BEL group). They construct a 
phase diagram for the one-dimensional 
Schelling model. The system passes 
through four main behavioral regimes 
as τ  goes from 0 to 1.

As in the NetLogo model, the small-
est values of τ define a region where 
not much happens. Most agents are 
“born happy”; they never have cause 
to leave their initial position, and so 
the racial structure is little changed 
from the random distribution. The BEL 
group shows that this phase of near-
indifference to race extends from τ = 0 
up to a certain constant κ, which has a 
numerical value of about 0.353. (The 
derivation of κ is a fascinating bit of 
number theory and analysis, but too 
long a detour to present here.)

At values of τ above κ but below 
1/2, a new, segregated phase abruptly 
takes over. Indeed, in this region—
where agents tolerate being in a local 
minority—the system is more segre-

gated than it is at τ = 1/2, the threshold 
where minority status becomes unac-
ceptable. (In this context, “more seg-
regated” means the typical length of a 
monochromatic block is greater.)

Kleinberg suggests a way of under-
standing this counterintuitive finding. 
At τ = 1/2, he says, “what prevents seg-
regation from happening on a massive 
scale is that smaller-scale segregation 
happens first, and it imposes a stable 
structure that limits the further spread 
of monochromatic runs.” In the τ < 1/2 
region, by contrast, fewer firewall struc-
tures provide nuclei for monochromatic 
runs, with the result that those runs can 
grow to greater length.

Continuing through the phase dia-
gram, at τ = 1/2 we enter the territory 
already explored by the BIKK group. 
Then, for even higher τ values, where 
agents demand not just equality of num-
bers but an absolute majority, the final 
phase appears. Here the outcome is total 
apartheid, as the agents of each color 
withdraw into a single mass occupying 
half the ring. Once this configuration is 
reached, the separation is irreversible.

Many more variations of the Schelling 
model remain to be investigated. One 
might ask how the outcome changes 
when the two subpopulations differ in 

size. Or one might allow preferences to 
vary between groups or between indi-
viduals with a group. And the biggest 
question is whether any of the results 
for linear models can be made to work 
on the plane. That task will be challeng-
ing: In one dimension, the boundary 
between two regions is always a single 
point, but borderlines on the plane 
can have convoluted shapes that affect 
neighborhood composition. 

Ground Truth
Can a game played with colored dots 
tell us anything useful about housing 
patterns and race relations in real cit-
ies? Racial segregation is not purely a 
result of individuals expressing prefer-
ences about their neighbors. There are 
legal, economic, and institutional forc-
es at work as well. And segregation is 
generally not a symmetric process, in 
which two groups agree to live apart, 
but rather is a mechanism by which 
one group excludes the other. All of 
this is left out of the Schelling model.

But the absurd simplicity of the 
model is also its main fascination. 
Even mindless colored dots, entirely 
innocent of history and geography, can 
give rise to complex patterns no one 
expected or wanted. The dynamic at 
the heart of the model is more math-
ematical than sociological. It’s just this: 
If I move from Downtown to Uptown 
because I seek different neighbors, my 
presence in one place and my absence 
from the other alters both of those en-
vironments, which may induce others 
to move in turn. What could be more 
obvious? Yet the consequences are not 
easily foreseen.

My own qualms about the model 
focus not on oversimplification but on 
questions of robustness—of sensitiv-
ity to details of implementation. For 
example, in Schelling’s first version of 
the model, an unhappy agent moved 

“What prevents 
segregation 

from happening 
on a massive scale 

is that smaller-
scale segregation 

happens first.”
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A one-dimensional Schelling model evolves from a random initial 
arrangement to a moderately segregated final state. Each row, reading 
from top to bottom, shows one time step. Fine white lines indicate 
pairs of unhappy agents that are about to swap positions. The intoler-

ance threshold t is 1/2 and the neighborhood radius w is 4. At the out-
set the 120 agents form 60 monochromatic runs; by the end they have 
condensed into just 8. But the process of agglomeration ends here; no 
agents have an incentive to move again.
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to the nearest open location, not to a 
randomly chosen one; this determinis-
tic choice seems to yield dramatically 
different results in some cases. Small 
changes in the rules governing favor-
able, neutral, and unfavorable moves 
also have major effects. Such sensitiv-
ity to minor variations is worrisome 
in a model meant to represent human 
behavior. 

Markus M. Möbius of Microsoft 
 Research and Tanya S. Rosenblat of 
Iowa State University have tried to 
test the model against real-world data. 
Working with census records for Chi-
cago, they find evidence supporting 
the hypothesis that local interactions 
have the strongest influence on racial 
preferences, as in the Schelling mod-
el; the effective radius when people 
choose a neighborhood may be as 
small as 150 meters. 

Meanwhile, back in my old neigh-
borhood on the western edge of Phila-
delphia, the social fabric of segrega-
tion has begun to fray. According to 
the 2010 Census, the block group that 
includes my former home is now two-
thirds African-American; on the other 
hand, the city neighborhood across the 
creek is still only 1 percent white.

Regrettably, the Schelling model can 
have nothing to say about this further 
evolution of the urban scene. The mod-
el describes only the genesis of segrega-
tion; once the colored dots have all sort-
ed themselves into monochrome units, 
the map can never change. I would love 
to believe that the time has come for a 
model of racial reintegration. 
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