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Crinkly Curves

Brian Hayes

In 1877 the german mathemati-
cian Georg Cantor made a shock-

ing discovery. He found that a two-
dimensional surface contains no more 
points than a one-dimensional line. 
Cantor compared the set of all points 
forming the area of a square with the 
set of points along one of the line seg-
ments on the perimeter of the square. 
He showed that the two sets are the 
same size. Intuition rebels against 
this notion. Inside a square you could 
draw infinitely many parallel line seg-
ments side by side. Surely an area with 
room for such an infinite array of lines 
must include more points than a single 
line—but it doesn’t. Cantor himself 
was incredulous: “I see it, but I don’t 
believe it,” he wrote. 

Yet the fact was inescapable. Cantor 
defined a one-to-one correspondence 
between the points of the square and 
the points of the line segment. Every 
point in the square was associated 
with a single point in the segment; ev-
ery point in the segment was matched 
with a unique point in the square. No 
points were left over or used twice. 
It was like pairing up mittens: If you 
come out even at the end, you must 
have started with equal numbers of 
lefts and rights.

Geometrically, Cantor’s one-to-one 
mapping is a scrambled affair. Neigh-
boring points on the line scatter to 
widely separated destinations in the 
square. The question soon arose: Is 
there a continuous mapping between 
a line and a surface? In other words, 
can one trace a path through a square 
without ever lifting the pencil from the 
paper and touch every point at least 
once? It took a decade to find the first 
such curve. Then dozens more were 

invented, as well as curves that fill up 
a three-dimensional volume or even a 
region of some n-dimensional space. 
The very concept of dimension was 
undermined.

Circa 1900, these space-filling curves 
were viewed as mysterious aberra-
tions, signaling how far mathematics 
had strayed from the world of every-
day experience. The mystery has nev-
er entirely faded away, but the curves 
have grown more familiar. They are 
playthings of programmers now, nice-
ly adapted to illustrating certain algo-
rithmic techniques (especially recur-
sion). More surprising, the curves have 
turned out to have practical applica-
tions. They serve to encode geographic 
information; they have a role in image 
processing; they help allocate resourc-
es in large computing tasks. And they 
tickle the eye of those with a taste for 
intricate geometric patterns.

How to Fill Up Space
It’s easy to sketch a curve that com-
pletely fills the interior of a square. The 
finished product looks like this:

How uninformative! It’s not enough to 
know that every point is covered by the 
passage of the curve; we want to see 
how the curve is constructed and what 
route it follows through the square.

If you were designing such a route, 
you might start out with the kind of 
path that’s good for mowing a lawn:

But there’s a problem with these zig-
zags and spirals. A mathematical lawn 
mower cuts a vanishingly narrow 
swath, and so you have to keep re-
ducing the space between successive 
passes. Unfortunately, the limiting pat-
tern when the spacing goes to zero is 
not a filled area; it is a path that forever 
retraces the same line along one edge 
of the square or around its perimeter, 
leaving the interior blank.

The first successful recipe for a 
space-filling curve was formulated 
in 1890 by Giuseppe Peano, an Ital-
ian mathematician also noted for his 
axioms of arithmetic. Peano did not 
provide a diagram or even an explicit 
description of what his curve might 
look like; he merely defined a pair of 
mathematical functions that give x and 
y coordinates inside a square for each 
position t along a line segment.

Soon David Hilbert, a leading light 
of German mathematics in that era, de-
vised a simplified version of Peano’s 
curve and discussed its geometry. The 
illustration at the top of the opposite 
page is a redrawing of a diagram 
from Hilbert’s 1891 paper, showing 
the first three stages in the construc-
tion of the curve.

Programming by Procrastination
The lower illustration on the opposite 
page shows a later stage in the evolu-
tion of the Hilbert curve, when it has 
become convoluted enough that one 
might begin to believe it will eventu-
ally reach all points in the square. The 
curve was drawn by a computer pro-
gram written in a recursive style that I 
call programming by procrastination. 
The philosophy behind the approach 

Some curves are
so convoluted they 
wiggle free of the 

one-dimensional world 
and fill up space
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is this: Plotting all those twisty turns 
looks like a tedious job, so why not put 
it off as long as we can? Maybe we’ll 
never have to face it. 

Let us eavesdrop on a computer pro-
gram named Hilbert as it mumbles to 
itself while trying to solve this problem: 

Hmm. I’m supposed to draw a 
curve that fills a square. I don’t 
know how to do that, but maybe 
I can cut the problem down to 
size. Suppose I had a subroutine 
that would fill a smaller square, 
say one-fourth as large. I could 
invoke that procedure on each 
quadrant of the main square, get-
ting back four separate pieces of 
the space-filling curve. Then, if I 
just draw three line segments to 
link the four pieces into one long 
curve, I’ll be finished!

Of course I don’t actually have 
a subroutine for filling in a quad-
rant. But a quadrant of a square is 
itself a square. There’s a program 
named Hilbert that’s supposed 
to be able to draw a space-filling 
curve in any square. I’ll just hand 
each of the quadrants off to Hilbert.

The strategy described in this mono-
logue may sound like a totally point-
less exercise. The Hilbert program 
keeps subdividing the problem but 
has no plan for ever actually solving it. 
However, this is one of those rare and 
wonderful occasions when procrasti-
nation pays off, and the homework as-
signment you lazily set aside last night 
is miraculously finished when you get 
up in the morning.

Consider the sizes of the successive 
subsquares in Hilbert’s divide-and-
conquer process. At each stage, the 
side length of the square is halved, and 
the area is reduced to one-fourth. The 
limiting case, if the process goes on in-
definitely, is a square of zero side length 
and zero area. So here’s the procrasti-
nator’s miracle: Tracing a curve that 
touches all the points inside a size-zero 
square is easy, because such a square is 
in fact a single point. Just draw it!

Practical-minded readers will object 
that a program running in a finite ma-
chine for a finite time will not actually 
reach the limiting case of squares that 
shrink away to zero size. I concede the 
point. If the recursion is halted while 
the squares still contain multiple points, 
one of those points must be chosen as a 
representative; the center of the square 
is a likely candidate. In making the il-

lustration above, I stopped the program 
after seven levels of recursion, when the 
squares were small but certainly larger 
than a single point. The wiggly blue 
line connects the centers of 47 = 16,384 
squares. Only in the mind’s eye will 
we ever see a true, infinite space-filling 

curve, but a finite drawing like this one 
is at least a guide to the imagination.

There is one more important aspect 
of this algorithm that I have glossed 
over. If the curve is to be continuous—
with no abrupt jumps—then all the 
squares have to be arranged so that 

After seven stages of elaboration the Hilbert curve meanders through 47 = 16,384 subdivisions of 
the square. The curve is an unbranched path with end points at the lower left and lower right. It 
is continuous in the sense that it has no gaps or jumps, but it is not smooth: All of the right angles 
are points where the curve has no tangent (or, in terms of calculus, no derivative). Continuing the 
subdivision process leads to a limiting case where the curve fills the entire square, showing that a 
two-dimensional square has no more points than a one-dimensional line segment.
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A space-filling curve evolves through successive stages of refinement as it grows to cover the 
area of a square. This illustration is a redrawing of the first published diagram of such a curve; 
the original appeared in an 1891 paper by David Hilbert. The idea behind the construction 
is to divide a line segment into four intervals and divide a square into four quadrants, then 
establish a correspondence between the points of corresponding intervals and quadrants. The 
process continues with further recursive subdivisions.
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one segment of the curve ends where 
the next segment begins. Matching up 
the end points in this way requires ro-
tating and reflecting some of the sub-
squares. (For an animated illustration 
of these transformations, see http://
bit-player.org/extras/hilbert.)

Grammar and Arithmetic
The procrastinator ’s algorithm is 
certainly not the only way to draw a 
space-filling curve. Another method 
exploits the self-similarity of the pat-
tern—the presence of repeated motifs 
that appear in each successive stage of 
the construction. In the Hilbert curve 
the basic motif is a U-shaped path with 
four possible orientations. In going 
from one stage of refinement to the 
next, each U orientation is replaced by 
a specific sequence of four smaller U 
curves, along with line segments that 
link them together, as shown in the 
upper illustration at left. The substitu-
tion rules form a grammar that gener-
ates geometric figures in the same way 
that a linguistic grammar generates 
phrases and sentences.

The output of the grammatical pro-
cess is a sequence of symbols. An easy 
way to turn it into a drawing is to in-
terpret the symbols as commands in 
the language of “turtle graphics.” The 
turtle is a conceptual drawing instru-
ment, which crawls over the plane 
in response to simple instructions to 
move forward, turn left or turn right. 
The turtle’s trail across the surface be-
comes the curve to be drawn.

When Peano and Hilbert were writ-
ing about the first space-filling curves, 
they did not explain them in terms of 
grammatical rules or turtle graphics. 
Instead their approach was numeri-
cal, assigning a number in the interval 
[0, 1] to every point on a line segment 
and also to every point in a square. For 
the Hilbert curve, it’s convenient to do 
this arithmetic in base 4, or quaternary, 
working with the digits 0, 1, 2, 3. In a 
quaternary fraction such as 0.213, each 
successive digit specifies a quadrant or 
subquadrant of the square, as outlined 
in the lower illustration at left.

What about other space-filling 
curves? Peano’s curve is conceptual-
ly similar to Hilbert’s but divides the 
square into nine regions instead of four. 
Another famous example was invented 
in 1912 by the Polish mathematician 
Wacław Sierpiński; it partitions the 
square along its diagonals, forming tri-
angles that are then further subdivided. 

A more recent invention is the “flow
snake” curve devised in the 1970s by 
Bill Gosper. 

Filling three-dimensional space 
turns out to be even easier than filling 
the plane—or at least there are more 
ways to do it. Herman Haverkort of 
the Eindhoven Institute of Technol-
ogy in the Netherlands has counted 
the three-dimensional analogues of the 
Hilbert curve; there are more than 10 
million of them.

All Elbows
In everyday speech the word curve 
suggests something smooth and fluid, 
without sharp corners, such as a pa-
rabola or a circle. The Hilbert curve 
is anything but smooth. All finite ver-
sions of the curve consist of 90-degree 
bends connected by straight segments. 
In the infinite limit, the straight seg-
ments dwindle away to zero length, 
leaving nothing but sharp corners. The 
curve is all elbows. In 1900 the Ameri-
can mathematician Eliakim Hastings 
Moore came up with the term “crinkly 
curves” for such objects.

 In many respects these curves are 
reminiscent of fractals, the objects of 
fractional dimension that Benoit Man-
delbrot made famous. The curves’ self-
similarity is fractal-like: Zooming in re-
veals ever more intricate detail. But the 
Hilbert curve is not a fractal, because 
its dimension is not a fraction. Any 
finite approximation is simply a one-
dimensional line. On passing to the 
limit of infinite crinkliness, the curve 
suddenly becomes a two-dimensional 
square. There is no intermediate state.

Even though the complete path of 
an infinite space-filling curve cannot 
be drawn on paper, it is still a perfectly 
well-defined object. You can calculate 
the location along the curve of any 
specific point you might care to know 
about. The result is exact if the input is 
exact. A few landmark points for the 
Hilbert curve are plotted in the lower 
illustration on the opposite page.

The algorithm for this calculation 
implements the definition of the curve 
as a mapping from a one-dimensional 
line segment to a two-dimensional 
square. The input to the function is a 
number in the interval [0, 1], and the 
output is a pair of x, y coordinates. 

The inverse mapping—from x, y 
coordinates to the segment [0, 1]—is 
more troublesome. The problem is that 
a point in the square can be linked to 
more than one point on the line.

∩ ⇒ ⊃ ↑ ∩ → ∩ ↓ ⊂

⊃ ⇒ ∩ → ⊃ ↑ ⊃ ← ∪

⊂ ⇒ ∪ ← ⊂ ↓ ⊂ → ∩

∪ ⇒ ⊂ ↓ ∪ ← ∪ ↑ ⊃

grammar

⇒

⇒

⇒

⇒

Substitution rules generate the Hilbert curve   
by replacing a U-shaped motif in any of four 
orientations with sequences of four rotated 
and reflected copies of the same motif. The 
rules constitute a grammar.

0.0

0.0

0.1

0.1

0.2 0.3

0.3

1.0

0.20

0.20

0.21

0.21

0.22

0.22

0.23

0.23

0.30

0.210 0.211 0.212 0.213

0.213...

0.220

Base-4 encoding of the Hilbert curve shows 
how fourfold divisions of the unit interval [0, 1] 
are mapped onto quadrants of the square. For 
example, any base-4 number beginning 0.213 
must lie in the small square outlined in blue.
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Cantor’s dimension-defying func-
tion was a one-to-one mapping: Each 
point on the line was associated with 
exactly one point in the square, and 
vice versa. But Cantor’s mapping was 
not continuous: Adjacent points on the 
line did not necessarily map to adja-
cent points in the square. In contrast, 
the space-filling curves are continu-
ous but not one-to-one. Although each 
point on the line is associated with a 
unique point in the square, a point in 
the square can map back to multiple 
points on the line. A conspicuous ex-
ample is the center of the square, with 
the coordinates x = ½, y = ½. Three sep-
arate locations on the line segment (1∕6, 
½ and 5∕6) all connect to this one point 
in the square.

Math on Wheels
Space-filling curves have been called 
monsters, but they are useful monsters. 
One of their most remarkable applica-
tions was reported 30 years ago by John 
J. Bartholdi III and his colleagues at the 
Georgia Institute of Technology. Their 
aim was to find efficient routes for driv-
ers delivering Meals on Wheels to el-
derly clients scattered around the city 
of Atlanta. Finding the best possible de-
livery sequence would be a challenging 
task even with a powerful computer. 
Meals on Wheels didn’t need the so-
lution to be strictly optimal, but they 
needed to plan and revise routes quick-
ly, and they had to do it with no com-
puting hardware at all. Bartholdi and 
his coworkers came up with a scheme 
that used a map, a few pages of printed 
tables and two Rolodex files.

Planning a route started with Rolodex 
cards listing the delivery addresses. The 

manager looked up the map coordinates 
of each address, then looked up those 
coordinates in a table, which supplied an 
index number to write on the Rolodex 

card. Sorting the cards by index number 
yielded the delivery sequence.

Behind the scenes in this procedure 
was a space-filling curve (specifically, 

Positions of points along the infinitely crinkled course of the Hilbert curve can be calculated 
exactly, even though the curve itself cannot be drawn. Here 25 selected points in the interval 
[0,1] are mapped to coordinates in the unit square, [0,1]2. The points are color coded according 
to the largest prime factor of their denominator: red for 2, green for 3, blue for 5. Although a 
finite approximation to the Hilbert curve is shown in the background, the positions within 
the square are those along the completed, infinite curve. The inverse mapping is not unique: 
Points in the square map back to multiple points in the interval. 
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The first space-filling curve (left) was described in 1890 by Italian mathematician Giuseppe Peano; the construction divides a square into nine 
smaller squares. A curve based on a triangular dissection (center) was introduced in 1912 by Polish mathematician Wacław Sierpiński. The 
“flowsnake” curve (right), invented by American mathematician Bill Gosper in the 1970s, fills a ragged-edged hexagonal area.
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a finite approximation to a Sierpiński 
curve) that had been superimposed 
on the map. The index numbers in 
the tables encoded position along this 
curve. The delivery route didn’t follow 
the Sierpiński curve, with all its crinkly 
turns. The curve merely determined 
the sequence of addresses, and the 
driver then chose the shortest point-to-
point route between them.

A space-filling curve works well in 
this role because it preserves “local-
ity.” If two points are nearby on the 
plane, they are likely to be nearby on 
the curve as well. The route makes no 
wasteful excursions across town and 
back again. 

The Meals on Wheels schedul-
ing task is an instance of the travel-
ing salesman problem, a notorious 
stumper in computer science. The 
Bartholdi algorithm gives a solution 
that is not guaranteed to be best but 

is usually good. For randomly distrib-
uted locations, the tours average about 
25 percent longer than the optimum. 
Other heuristic methods can beat this 
performance, but they are much more 
complicated. The Bartholdi method 
finds a route without even computing 
the distances between sites.

Locality is a helpful property in 
other contexts as well. Sometimes 
what’s needed is not a route from one 
site to the next but a grouping of sites 
into clusters. In two or more dimen-
sions, identifying clusters can be dif-
ficult; threading a space-filling curve 
through the data set reduces it to a 
one-dimensional problem. 

The graphic arts have enlisted the 
help of space-filling curves for a pro-
cess known as halftoning, which al-
lows black-and-white devices (such as 
laser printers) to reproduce shades of 
gray. Conventional halftoning meth-

ods rely on arrays of dots that vary in 
size to represent lighter and darker re-
gions. Both random and regular arrays 
tend to blur fine features and sharp 
lines in an image. A halftone pattern 
that groups the dots along the path of 
a Hilbert or Peano curve can provide 
smooth tonal gradients while preserv-
ing crisp details.

Another application comes from a 
quite different realm: the multiplica-
tion of matrices (a critical step in large-
scale computations). Accessing matrix 
elements by rows and columns requires 
the same values to be read from memo-
ry multiple times. In 2006 Michael Bad-
er and Christoph Zenger of the Techni-
cal University of Munich showed that 
clustering the data with a space-filling 
curve reduces memory traffic.

Bader is also the author of an excel-
lent recent book that discusses space-
filling curves from a computational 
point of view. An earlier volume by 
Hans Sagan is more mathematical. 

 Given that people have found such 
a surprising variety of uses for these 
curious curves, I can’t help wondering 
whether nature has also put them to 
work. Other kinds of patterns are ev-
erywhere in the natural world: stripes, 
spots, spirals and many kinds of 
branching structures. But I can’t recall 
seeing a Peano curve on the landscape. 
The closest I can come are certain trace 
fossils (preserved furrows and bur-
rows of organisms on the sea floor) 
and perhaps the ridges and grooves 
on the surface of the human cerebrum.  

Cantor’s Conundrums
Applications of space-filling curves are 
necessarily built on finite examples—
paths one can draw with a pencil or 
a computer. But in pure mathematics 
the focus is on the infinite case, where 
a line gets so incredibly crinkly that it 
suddenly becomes a plane.

Cantor’s work on infinite sets was 
controversial and divisive in his own 
time. Leopold Kronecker, who had 
been one of Cantor’s professors in 
Berlin, later called him “a corrupter of 
youth” and tried to block publication 
of the paper on dimension. But Can-
tor had ardent defenders, too. Hilbert 
wrote in 1926: “No one shall expel us 
from the paradise that Cantor has cre-
ated.” Indeed, no one has been evicted. 
(A few have left of their own volition.)

Cantor’s discoveries eventually led to 
clearer thinking about the nature of con-
tinuity and smoothness, concepts at the 

Approximate solutions to the traveling salesman problem emerge from a simple algorithm 
based on space-filling curves. Here 25 cities (black dots) are randomly distributed within a 
square. The traveling salesman problem calls for the shortest tour that passes through all 
the cities and returns to the starting point. Listing the cities in the order they are visited by a 
space-filling curve yields a path of length 274 (green line); the optimal tour (red line) is about 13 
percent better, with a length of 239. The space-filling curve used in this example was invented 
by E. H. Moore in 1900; it is related to the Hilbert curve but forms a closed circuit. The unit of 
distance for measuring tours is the step size of the Moore curve. The optimal tour was com-
puted with the Concorde TSP Solver (http://www.tsp.gatech.edu/concorde.html).
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root of calculus and analysis. The relat-
ed development of space-filling curves 
called for a deeper look at the idea of 
dimension. From the time of Descartes, 
it was assumed that in d-dimensional 
space it takes d coordinates to state the 
location of a point. The Peano and Hil-
bert curves overturned this principle: A 
single number can define position on 
a line, on a plane, in a solid, or even in 
those 11-dimensional spaces so fashion-
able in high-energy physics.

At about the same time that Cantor, 
Peano and Hilbert were creating their 
crinkly curves, the English schoolmas-
ter Edwin Abbott was writing his fable 
Flatland, about two-dimensional crea-
tures that dream of popping out of the 
plane to see the world in 3D. The Flat-
landers might be encouraged to learn 
that mere one-dimensional worms can 
break through to higher spaces just by 
wiggling wildly enough.
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Summer Mountain Lightning & Some Music

      Tesla, maker of homemade lightning, put sparks
	 in a wall by mistake. He never
   had much of a lover & now they’ve named
a car for him; & now a tanager in the pine
	 has perched upright 
      to put itself in danger for a mate.
	
If, like a fire, that sound had three sides,
    if like a point, a flame, it would be
       pure geometry; such objects that strike you
           as beautiful, you cannot name.  
     Tesla moved to the mountains, began 
shooting rays, sexual Es the hawk gave back,
     into the abstract—days adept 
at non-nothingness—far past a life & its shape. 

		  The great resister 
          stays in you, plodding, then
 the blind harpist plays. Between magnetic poles, 
they place a motor made of money
      to drive the horror of an age—& daily, 
these unmanageable patterns, & weekly, 
	 the magnificent ordinary.
               
    The next thing you make will be different.
You stand in the field not yet being 
	 struck, talking to nothing, jagged 
      & unsure. You knew this 
when you started the experiment; you wanted
          to be changed & you were—

—Brenda Hillman


