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Quasirandom Ramblings

Brian Hayes

In the early 1990s Spassimir Pas-
kov, then a graduate student at 

Columbia University, began analyzing 
an exotic financial instrument called a 
collateralized mortgage obligation, or 
CMO, issued by the investment bank 
Goldman Sachs. The aim was to esti-
mate the current value of the CMO, 
based on the potential future cash flow 
from thousands of 30-year mortgages. 
This task wasn’t just a matter of ap-
plying the standard formula for com-
pound interest. Many home mortgag-
es are paid off early when the home 
is sold or refinanced; some loans go 
into default; interest rates rise and fall. 
Thus the present value of a 30-year 
CMO depends on 360 uncertain and 
inter dependent monthly cash flows. 
The task amounts to evaluating an in-
tegral in 360-dimensional space.

There was no hope of finding an ex-
act solution. Paskov and his adviser, 
Joseph Traub, decided to try a some-
what obscure approximation technique 
called the quasi–Monte Carlo method. 
An ordinary Monte Carlo evaluation 
takes random samples from the set of 
all possible solutions. The quasi variant 
does a different kind of sampling—not 
quite random but not quite regular ei-
ther. Paskov and Traub found that some 
of their quasi–Monte Carlo programs 
worked far better and faster than the 
traditional technique. Their discovery 
would allow a banker or investor to 
assess the value of a CMO with just a 
few minutes of computation, instead of 
several hours.

It would make a fine story if I could 
now report that the subsequent peri-
od of “irrational exuberance” in the 
financial markets—the frenzy of trad-

ing in complex derivatives, and the 
sad sequel of crisis, collapse, recession, 
unemployment—could all be traced 
back to a mathematical innovation in 
the evaluation of high-dimensional in-
tegrals. But it’s just not so; there were 
other causes of that folly.

On the other hand, the work of Pas-
kov and Traub did have an effect: It 
brought a dramatic revival of interest 
in quasi–Monte Carlo. Earlier theoreti-
cal results had suggested that quasi–
Monte Carlo models would begin to 
run out of steam when the number of 
dimensions exceeded 10 or 20, and cer-
tainly long before it reached 360. Thus 
the success of the experiment was a 
surprise, which mathematicians have 
scrambled to explain. A key question is 
whether the same approach will work 
for other problems.

The whole affair highlights the curi-
ously ambivalent role of randomness 
in computing. Algorithms are by na-
ture strictly deterministic, yet many 
of them seem to benefit from a small 
admixture of randomness—an oppor-
tunity, every now and then, to make a 
choice by flipping a coin. In practice, 
however, the random numbers sup-
plied to computer programs are almost 
never truly random. They are pseudo-
random—artful fakes, meant to look 
random and pass statistical tests, but 
coming from a deterministic source. 
What’s intriguing is that the phony ran-

dom numbers seem to work perfectly 
well, at least for most tasks. 

Quasirandom numbers take the cha-
rade a step further. They don’t even 
make the effort to dress up and look 
random. Yet they too seem to be highly 
effective in many places where ran-
domness is called for. They may even 
outperform their pseudorandom cous-
ins in certain circumstances.

Integration by Darts
Here’s a toy problem to help pin down 
the distinctions between the pseudo 
and quasi varieties of randomness. 
Suppose you want to estimate the area 
of an object with a complicated shape, 
such as a maple leaf. There’s a well-
known trick for solving this problem 
with the help of a little randomness. 
Put the leaf on a board of known area, 
then throw darts at it randomly—try-
ing not to aim. If a total of N darts hit 
the board, and n of them land within 
the leaf, then the ratio n:N approxi-
mates the ratio of the leaf area to the 
board area. For convenience we can 
define the board area as 1, and so the 
estimated leaf area is simply n/N.

Tossing darts at random can be diffi-
cult and dangerous. But if you’re will-
ing to accept dots in lieu of darts, and 
if you let the computer take care of 
sprinkling them at random, the leaf-
measuring experiment is easy, and it 
works remarkably well.

I collected a leaf from a nearby sugar 
maple, photographed it, and placed the 
green shape within a square field of 
1,024 ×1,024 blank pixels. Then I wrote 
a program that tosses random dots 
(actually pseudorandom dots) at the 
digitized image. The first time I ran the 
program, 429 of 1,024 dots fell on the 
leaf, for an area estimate of 0.4189. The 
actual area, as defined by a count of 
colored pixels, is 0.4185. The random-
dots approximation was somewhat bet-
ter than I expected—a case of random 
good luck, though nothing out of the 
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ordinary. When I repeated the experi-
ment 1,000 times, the mean estimate of 
the leaf’s area was 0.4183, with a stan-
dard deviation of 0.0153.

The basic idea in Monte Carlo stud-
ies is to reformulate a mathematical 
problem—such as calculating the area 
of a leaf—as a game of chance, where a 

player’s expected winnings are the an-
swer to the problem. In simple games, 
one can calculate the exact probability 
of every outcome, and so the expected 
winnings can also be determined ex-
actly. Where such calculations are in-
feasible, the alternative is to go ahead 
and play the game, and see how it 

comes out. This is the strategy of a 
Monte Carlo simulation. The computer 
plays the game many times, and takes 
the average result as an estimate of the 
true expected value.

For the leaf-in-a-square problem, the 
expected value is the ratio of the leaf 
area to that of the square. Choosing N 

Estimating the area of a complex form—in this case a sugar-maple leaf—is a classic application of the computational device known as the 
Monte Carlo method. The image of the leaf is embedded in a square whose area can be taken as 1. The basic idea is to sprinkle dots through-
out the square and count how many hit the leaf (yellow) and how many miss (blue). The number of hits as a fraction of the total number of 
dots approximates the area of the leaf. Each of the three trials deploys 1,024 dots. The traditional Monte Carlo technique (upper right) scatters 
the dots randomly over the square. A fully deterministic alternative (lower left) constrains the dots to lie on a regular grid. The quasi–Monte 
Carlo method (lower right) employs a distinctive sampling pattern that tries to attain a uniform density of dots, without being either random 
or regular. The three methods yield area estimates of 0.4189, 0.4209 and 0.4141 respectively, all within 1 percent or less of the actual area, 0.4185. 
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random points and counting the num-
ber of “hits” approximates the area ra-
tio, and the approximation gets better 
as N increases. When N approaches in-
finity, the measurement becomes exact. 
This last point is not just an empirical 
observation but a promise made by 
a mathematical theorem, namely the 
law of large numbers. This is the same 
principle that guarantees a fair coin 
will come up heads half the time when 
the sample is large enough.

The Curse of Dimensionality
Randomness has a conspicuous role 
in this description of the Monte Carlo 
method. In particular, the appeal to 
the law of large numbers requires that 
the sample points be chosen randomly. 
And it’s easy to see—just by looking 
at a picture—why random sampling 
works well: It scatters points every-
where. What’s not so easy to see is why 
other kinds of sample-point arrange-
ments would not also serve the pur-
pose. After all, one could measure the 
leaf area by laying down a simple grid 
of points in the square and counting 
the hits. I tried this experiment with 
my leaf image, placing 1,024 points in 
a 32×32 grid. I got an area estimate of 
0.4209—not quite as good as my lucky 
random run, but still within 0.6 per-
cent of the true area.

I also tried measuring the leaf with 
1,024 quasirandom sample points, 
whose arrangement is in some sense 
intermediate between total chaos and 
total order. (For an explanation of how 
the quasirandom pattern is construct-

ed, see “A Recipe for Quasirandom 
Numbers” on page 286.) The estimate 
from counting hits with quasirandom 
points was 0.4141, giving an error of 
1 percent.

All three of these procedures give 
quite respectable results. Does that 
mean they are all equally powerful? 
No, I think it means that measuring 
the area of a leaf in two dimensions is 
an easy problem.

The task gets much harder in higher 
dimensions. Understanding why calls 
for an exercise in multidimensional 
thinking. Imagine a d-dimensional 
“cube” with edges of length 1, and 
a smaller cube inside it, with edge 
lengths along each dimension equal to 
1/2. When d=1, a cube is just a line 
segment, and volume is equivalent to 
length; thus the smaller cube has half 
the volume of the large one. For d=2, 
the cube is a square, and volume is area; 
the small cube has volume 1/4. The 
case d=3 corresponds to an ordinary 
cube, and the volume filled by the small 
cube is now just 1/8. The progression 
continues. By the time we reach dimen-
sion d=20, the smaller cube—still with 
edge length 1/2 along each dimen-
sion—occupies only a millionth of the 
total volume. The mathematician Rich-
ard Bellman called this phenomenon 
“the curse of dimensionality.”

If we want to measure the volume 
of the one-in-a-million small cube—
or even just detect its presence—we 
need enough sampling points to get at 
least one sample from the small cube’s 
interior. In other words, when we’re 

counting hits, we need to count at least 
one. For a 20-dimensional grid pattern, 
that means we need a million points 
(or, more precisely, 220 = 1,048,576). 
With random sampling, the size re-
quirement is probabilistic and hence 
a little fuzzy, but the number of points 
needed if we want to have an expec-
tation of a single hit is again 220. The 
analysis for quasirandom sampling 
comes out the same. Indeed, if you are 
groping blindly for an object of vol-
ume 1/2d, it hardly matters how the 
search pattern is arranged; you will 
have to look in 2d places.

If real-world problems were as hard 
as this one, the situation would be 
bleak. There would be no hope at all of 
dealing with a 360-dimension integral. 
But we know some problems of that 
scale do yield to Monte Carlo tech-
niques; a reasonable guess is that the 
solvable problems have some internal 
structure that speeds the search. Fur-
thermore, the choice of sampling pat-
tern does seem to make a difference, so 
there is a meaningful distinction to be 
made among all the gradations of true, 
pseudo, quasi and non randomness.

Random Variations
The concept of randomness in a set 
of numbers has at least three compo-
nents. First, randomly chosen numbers 
are unpredictable: There is no fixed 
rule governing their selection. Sec-
ond, the numbers are independent, or 
uncorrelated: Knowing one number 
will not help you guess another. Fi-
nally, random numbers are unbiased, 
or uniformly distributed: No matter 
how you slice up the space of possible 
values, each region can expect to get its 
fair share.

These concepts provide a useful key 
for distinguishing between truly ran-
dom, pseudorandom, quasirandom 
and orderly sets. True random num-
bers have all three characteristics: 
They are unpredictable, uncorrelated 
and unbiased. Pseudorandom num-
bers abandon unpredictability; they 
are generated by a definite arithmetic 
rule, and if you know the rule, you 
can reproduce the entire sequence. But 
pseudorandom numbers are still un-
correlated and unbiased (at least to a 
good approximation).

Quasirandom numbers are both 
predictable and highly correlated. 
There’s a definite rule for generating 
them, and the patterns they form, al-
though not as rigid as a crystal lattice, 

one-dimensional
cube

two-dimensional
cube

three-dimensional
cube

volume = 1/2 volume
= 1/4

volume
= 1/8

Estimating volumes gets progressively harder in higher-dimensional spaces, an effect some-
times called “the curse of dimensionality.” Suppose a d-dimensional cube with edges of 
length 1 has a smaller cube inside it with edges of length 1/2. When d=1 (in which case the 
“cube” is actually a line segment, and volume is length), the smaller cube fills half the total 
volume. For d=2 (a square, with volume equivalent to area), the fractional volume is 1/4, and 
for d=3 it is 1/8. Thus the fractional volume shrinks as 1/2d, which means that roughly 2d sam-
pling points are needed just to detect the existence of the small cube.
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nonetheless have a lot of regularity. 
The one element of randomness that 
quasirandom numbers preserve is 
the uniform or equitable distribution. 
They are spread out as fairly and even-
ly as possible.

A highly ordered set, such as a cubic 
lattice, preserves none of the proper-
ties of randomness. It’s obvious that 
these points fail the tests of unpredict-
ability and independence, but perhaps 
it’s not so clear that they lack uniform 
distribution. After all, it’s possible 
to carve up an N-point lattice into N 
small cubes that each contain exactly 
one point. But that’s not enough to 
qualify the lattice as fairly and evenly 
distributed. The ideal of equal distri-
bution demands an arrangement of N 
points that yields one point per region 
when the space is divided into any set 
of N identical regions. The rectilinear 
lattice fails this test when the regions 
are slices parallel to the axes.

These three aspects of randomness 
are important in different contexts. In 
the case of the other Monte Carlo—the 
casino in Monaco—unpredictability 
is everything. Cryptographic appli-
cations of randomness are similar. In 
both these cases, an adversary is ac-
tively trying to detect and exploit any 
hint of pattern.

Some kinds of computer simula-
tions are very sensitive to correlations 
between successive random numbers, 
so independence is important. For the 
volume estimations under discussion 
here, however, uniformity of distri-
bution is what matters most. And the 

quasirandom numbers, by giving up 
all pretense to unpredictability or lack 
of correlation, are able to achieve high-
er uniformity.

A Slight Discrepancy
Uniformity of distribution is mea-
sured in terms of its opposite, which 
is called discrepancy. For points in a 
two-dimensional square, discrepancy 
is calculated as follows. Consider all 
the rectangles with sides parallel to 
the coordinate axes that could possi-
bly be drawn inside the square. For 
each such rectangle, count the number 
of points enclosed, and also calculate 
the number of points that would be en-
closed, based on the area of the rect-
angle, if the distribution were perfectly 
uniform. The maximum difference be-
tween these numbers, taken over all 
possible rectangles, is a measure of the 
discrepancy. 

Another measure of discrepancy, 
called star discrepancy, looks only at 
the subset of axis-parallel rectangles 
that have one corner anchored at the 
origin of the unit square. And there’s 
no reason to consider only rectangles; 
versions of discrepancy can be defined 
for circles or triangles or other figures. 
The measures are not all equivalent; 
results vary depending on the shape. 
It’s interesting to note that the process 
for measurement of discrepancy has a 
strong resemblance to the Monte Carlo 
process itself.

Grids and lattices fare poorly when 
it comes to discrepancy because the 
points are arranged in long rows and 

columns. An infinitely skinny rectan-
gle that should enclose no points at all 
can take in an entire row. From such 
worst-case rectangles it follows that the 
discrepancy of a square lattice with N 
points is √N

—
. Interestingly, it turns out 

that the discrepancy of a random or 
pseudorandom lattice is also about √N

—
. 

In other words, in an array of a million 
random points, there is likely to be at 
least one rectangle that has either 1,000 
points too many or 1,000 too few.

Quasirandom patterns are deliber-
ately designed to thwart all opportuni-
ties for drawing such high-discrepancy 
rectangles. For quasirandom points, 
the discrepancy can be as low as the 
logarithm of N, which is much small-
er than √N

—
. For example, at N=106, 

√N
—

=1,000 but log N=20. (I am taking 
logarithms to the base 2.)

Discrepancy is a key factor in gaug-
ing the performance of Monte Carlo 
and quasi–Monte Carlo simulations. 
It determines the level of error or sta-
tistical imprecision to be expected for 
a given sample size. For convention-
al Monte Carlo, with random sam-
pling, the expected error diminishes 
as 1/√N

—
. For quasi–Monte Carlo, the 

corresponding “convergence rate” is 
(log N)d/N, where d is the dimension-
ality of the space. (Various constants 
and other details are neglected here, so 
the comparison is valid only for rates 
of growth, not for exact values.)

The 1/√N
—

 convergence rate for ran-
dom sampling can be painfully slow. 
Getting one more decimal place of pre-
cision requires increasing N by a factor 

D* = |56.25 – 64| = 7.75D* = |42.02 – 30| = 12.02 D* = |27.56 – 31| = 3.44

Discrepancy measures how far a set of points departs from a uniform spatial distribution. The particular measure illustrated here, called star dis-
crepancy (denoted D*), is defined in terms of rectangles that have one vertex anchored to the lower left corner. If the distribution of points were 
perfectly uniform, the number of points enclosed by any such rectangle would be proportional to the rectangle’s area; the difference between 
this expected number of points and the actual number is the discrepancy associated with that rectangle. The star discrepancy for the pattern as 
a whole is given by the rectangle for which this difference is at a maximum. Here the star discrepancy is given for three patterns of 64 points: a 
pseudorandom array (left), a lattice (middle) and a quasirandom array (right). The quasirandom configuration is designed to minimize discrepancy.
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of 100, which means that a one-hour 
computation suddenly takes four days. 
The reason for this sluggishness is the 
clumpiness of the random distribution. 
Two points that happen to lie close to-
gether waste computer effort, because 
the same region is sampled twice; con-
versely, voids between points leave 
some areas unsampled and thereby 
contribute to the error budget. 

Compensating for this drawback, 
random sampling has one very im-
portant advantage: The convergence 
rate does not depend on the dimen-
sion of the space. To a first approxi-
mation, the program runs as fast in 
100 dimensions as in two dimensions. 
Quasi–Monte Carlo is different in this 
respect. If only we could ignore the fac-
tor of (log N)d, the performance would 

be dramatically superior to random 
sampling. We would have a 1/N con-
vergence rate, which calls for just a 
tenfold increase in effort for each ad-
ditional decimal place of precision. 
However, we can’t ignore the (log N)d 
part. This factor grows exponentially 
with increasing dimension d. The ef-
fect is small in dimension 1 or 2, but 
eventually it becomes enormous. In 10 
dimensions, for example, (log N)10/N 
remains larger than 1/√N

—
 until N ex-

ceeds 1043.
It was this known slow convergence 

in high dimensions that led to sur-
prise over the success of the Paskov 
and Traub financial calculation with 
d=360. The only plausible explana-
tion is that the “effective dimension” 
of the problem is actually much lower 
than 360. In other words, the volume 
being measured doesn’t really extend 
through all the dimensions of the 
space. (In the same way, a sheet of pa-
per lives in a three-dimensional space, 
but not much is lost by pretending it 
has no thickness.)

This explanation may sound dis-
missive: The calculation succeeded 
not because the tool was more power-
ful but because the problem was easi-
er than it looked. But note that the ef-
fective reduction in dimension works 
even when we don’t know which of 
the 360 dimensions can safely be ig-
nored. That’s almost magical.

How commonplace is this phenom-
enon? Is it just a fluke, or confined to 
a narrow class of problems? The an-
swer is not yet entirely clear, but a no-
tion called “concentration of measure” 
offers a reason for optimism. It sug-
gests that the high-dimension world is 
mostly a rather smooth and flat place, 
analogous to a high-gravity planet 
where it costs too much to create jag-
ged alpine landscapes.

Homeopathic Randomness
The Monte Carlo method is not a new 
idea, and neither is the quasi–Monte 
Carlo variation. Simulations based 
on random sampling were attempted 
more than a century ago by Francis 
Galton, Lord Kelvin and others. In 
those days they worked with true ran-
dom numbers (and had a fine time 
generating them!). 

The Monte Carlo method per se was 
invented and given its name at the 
Los Alamos Laboratory in the years 
after World War II. It’s no surprise that 
the idea emerged there: They had big 

A Recipe for Quasirandom Numbers

The numbers needed to form low-discrepancy patterns were studied for their 
own interest long before the quasi–Monte Carlo method was invented. In the 
1930s the Dutch mathematician Johannes G. van der Corput asked whether 
an infinite sequence of distinct numbers could be placed one by one on the 
unit interval (the segment of the number line from 0 up to 1) in such a way 
that the discrepancy measured at each step would never exceed some finite 
bound. The answer, proved a decade later by another Dutch mathematician, 
Tatyana van Aardenne-Ehrenfest, is no: The discrepancy grows without limit. 
Nevertheless, van der Corput’s work gave rise to a whole family of low-
discrepancy, quasirandom sets and sequences.

The procedure for building a van der Corput sequence is peculiar in that it 
mixes up numbers (mathematical entities) with numerals (the representation 
of numbers as lists of digits). The basic idea is to take an integer, reverse its 
digits, put a decimal point in front of it, and then treat the result as a fraction 
between 0 and 1. The operations can be carried out in any base. In base 2, for 
example, the number 100 (equal to decimal 4) becomes 001 and then 0.001, 
which is the binary representation of the fraction 1/8.

To create a two-dimensional quasirandom pattern with N points, we start 
with the sequence of integers i = 0, 1, 2, ..., N–1. Then for each point the x 
coordinate is set equal to i/N and the y coordinate is given by the van der 
Corput digit-reversal process for i. The result for N=8 is shown above. The 
quasirandom pattern in the illustration on page 283 was created in the same 
way with N=1,024. Many other algorithms for low-discrepancy sequences 
have been developed, but most of them also rely on shuffling the digits of 
a numeral. Some of the sequences are readily extended to arbitrarily high 
dimensions.

Patterns created by such mechanisms maintain a delicate balance between 
order and disorder. The spacing between points is reasonably uniform, so 
there are none of the clumps and voids that raise the discrepancy of a random 
set. But the uniform distribution has to be achieved without letting the points 
form rows or other regular structures that would also increase the discrep-
ancy. Balancing these conflicting goals is not hard in two dimensions, but 
compromise is unavoidable in higher dimensions. 
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problems (even more frightening than 
collateralized mortgage obligations); 
they had access to early digital com-
puters (eniac, maniac); and they had 
a community of creative problem-solv-
ers (Stanislaw Ulam, John von Neu-
mann, Nicholas Metropolis, Marshall 
Rosenbluth). From the outset, the Los 
Alamos group relied on pseudoran-
dom numbers. At the first conference 
on Monte Carlo methods, in 1949, von 
Neumann delivered his famous quip: 
“Anyone who considers arithmetic 
methods of producing random digits 
is, of course, in a state of sin.” Then he 
proceeded to sin.

Quasi–Monte Carlo was not far 
behind. The first publication on the 
subject was a 1951 report by Robert 
D. Richtmyer, who was head of the 
theoretical division at Los Alamos. 
The paper is an impressive debut. It 
sets forth the motivation for quasi-
random sampling, introduces much 
of the terminology, and explains the 
mathematics. But it was also presented 
as an account of a failed experiment; 
Richtmyer had wanted to show im-
proved convergence time for quasi–
Monte Carlo computations, but his 
results were negative. I am a fervent 
believer in reporting negative results, 
but I have to concede that it may have 
inhibited further investigation.

In 1968 S. K. Zaremba, then at the 
University of Wisconsin in Madison, 
wrote a strident defense of quasi-
random sampling (and a diatribe 
against pseudorandom numbers). As 
far as I can tell, he won few converts.

Work on the underlying mathemat-
ics of low-discrepancy sequences has 
gone on steadily through the decades 
(most notably, perhaps, by Klaus 
Friedrich Roth, I. M. Sobol, Harald 
Niederreiter and Ian H. Sloan). Now 
there is renewed interest in applica-
tions, and not just among the Wall 
Street quants. It’s catching on in phys-
ics and other sciences as well. Ray-
tracing in computer graphics is anoth-
er promising area.

The shifting fortunes of pseudo- and 
quasirandomness might be viewed 
in the context of larger trends. In the 
19th century, randomness of any kind 
was an unwelcome intruder, reluc-
tantly tolerated only where necessary 
(thermodynamics, Darwinian evolu-
tion). The 20th century, in contrast, fell 
madly in love with all things random. 
Monte Carlo models were a part of 
this movement; the quantum theory 

was a bigger part, with its insistence 
on divine dice games. Paul Erdős in-
troduced random choice into the 
methodology of mathematical proof, 
which is perhaps the unlikeliest place 
to look for it. In computing, random-
ized algorithms became a major topic 
of research. The concept leaked into 
the arts, too, with aleatoric music and 
the spatter paintings of Jackson Pol-
lack. Then there was chaos theory. A 
1967 essay by Alfred Bork called ran-
domness “a cardinal feature of our 
century.”

By now, though, the pendulum may 
be swinging the other way, most of 
all in computer science. Randomized 
algorithms are still of great practical 
importance, but the intellectual ex-
citement is on the side of derandomiza-
tion, showing that the same task can 
be done by a deterministic program. 
An open question is whether every al-
gorithm can be derandomized. Deep 
thinkers believe the answer will turn 
out to be yes. If they’re right, random-
ness confers no essential advantage in 
computing, although it may still be a 
convenience.

Quasirandomness seems to be tak-
ing us in the same direction, with a 
preference for taking our drams of 
randomness in the smallest possible 
doses. What’s ahead may be a kind 
of homeopathic doctrine, where the 
greater the dilution of the active agent, 
the greater its potency. That’s nonsense 
in medicine, but perhaps it works in 
mathematics and computation.
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