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Bit Lit

Brian Hayes

Books are being blown to bits. 
New ones are “born digital”; 

millions of old ones are being assimi-
lated into the mind of the machine. 

Some people question the wisdom 
of this transition to digital reading 
matter. Paper and ink have served us 
pretty well for a thousand years or 
more. Is it prudent to store everything 
we know in tiny smudges of electric 
charge we can’t see or touch? Critics 
also worry about who will wind up 
owning our cultural heritage. And 
then there are the sentimentalists, who 
say it’s just not the same curling up by 
the fireside with a good Kindle.

Well, I for one welcome our new 
computer overlords. And I would like 
to point out that books are not only 
for reading. There are other things we 
(and our computers) can do with the 
words in books. We can count them, 
sort them, make comparisons among 
them, search for patterns in their dis-
tribution, classify them, catalog them, 
analyze them. Yes, these are nerdy, 
mechanical, reductionist assaults on 
literature—but they are also methods 
of extracting meaning from text, just as 
reading is. And they scale better.

Googling the Lexicon
The data-driven approach to language 
studies got a big boost last winter, when 
a team from Harvard and Google re-
leased a collection of digitized words 
and phrases culled from more than 
five million books published over the 
past 600 years. The text came out of 
the Google Books project, an industrial-
scale scanning operation. Since 2004 
Google Books has been digitizing the 
collections of more than 40 large librar-

ies, as well as books supplied directly 
by publishers. At last report the Google 
scanning teams had paged their way 
through more than 15 million volumes. 
They estimate that another 115 million 
books remain to be done.

At the Google Books website, pag-
es of scanned volumes are displayed 
as images, composed of pixels rather 
than letters and words. But to make 
the books searchable—which is, after 
all, Google’s main line of business—
it’s necessary to extract the textual 
content as well. This is done by the 
process known as optical character rec-
ognition, or OCR—a computer’s clos-
est approximation to reading.

In 2007 Jean-Baptiste Michel and 
Erez Lieberman Aiden of Harvard 
recognized that the textual corpus 
derived from the Google Books OCR 
process might make a useful resource 
for scholarly research in history, lin-
guistics and cultural studies. There are 
many other corpora for such purposes, 
including one based on a Google in-
dex of the World Wide Web. But the 
Google Books database would be spe-
cial both because of its large size and 
because of its historical reach. The Web 
covers only 20 years, but the printed 
word takes us back to Gutenberg.

Michel and Aiden got in touch with 
Peter Norvig and Jon Orwant of Google 
and eventually arranged for access to 
the data. Because of copyright restric-
tions, it was not possible to release the 
full text of books or even substantial 

excerpts. Instead the text was chopped 
into “n-grams”—snippets of a few 
words each. A single word is a 1-gram, 
a two-word phrase is a 2-gram, and 
so on. The Harvard-Google database 
includes 1-, 2-, 3-, 4- and 5-grams. For 
each year in which an n-gram was ob-
served, the database lists the number 
of books in which it was found, the 
number of pages within those books on 
which it appeared and the total number 
of recorded occurrences.

The n-gram database is drawn from 
a subset of the full Google Books cor-
pus, consisting of 5,195,769 books, or 
roughly 4 percent of all the books ever 
printed. The selected books were those 
with the highest OCR quality and the 
most reliable metadata—the informa-
tion about the book, including the date 
of publication.

A further winnowing step excluded 
any n-gram that did not appear at least 
40 times in the selected books. This 
threshold, cutting off the extreme tail 
of the n-gram distribution, greatly re-
duced the bulk of the collection. Com-
bining the 40-occurrence threshold 
with the 4 percent sampling of books, 
a rough rule of thumb says that an n-
gram must appear in print about 1,000 
times if it’s to have a good chance of 
showing up in the database.

The final data set covers seven lan-
guages (Chinese, English, French, 
German, Hebrew, Russian and Span-
ish) and counts more than 500 billion 
occurrences of individual words. The 
chronological range is from 1520 to 
2008 (although Michel and Aiden fo-
cus mainly on the interval 1800–2000, 
where the data are most abundant and 
consistent).

Culturomics
This past January, Michel, Aiden and 
a dozen co-authors from Harvard, 
Google and elsewhere published a re-
search article in Science introducing the 
new linguistic corpus and presenting 
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some of their early findings. They also 
announced the Google Books Ngram 
Viewer, an online tool that allows any-
one to query the database. Finally, they 
made the entire n-gram data set avail-
able for download under a Creative 
Commons license.

Some of the results reported in the 
Science article show how n-gram data 
can be used to document changes in 
the structure of language. One study 
examines the shifting balance between 
regular and irregular verbs in English—
those that form the past tense with -ed 
and those that follow older or odder 
rules. Between 1800 and 2000 six verbs 
migrated from irregular to regular 
(burn, chide, smell, spell, spill and thrive) 
but two others went the opposite way 
(light and wake). In the case of sneaked 
vs. snuck, it’s too soon to tell.

Michel and Aiden describe their 
work as culturomics, a word formed 
on the model of genomics (but not yet 
to be found in the n-gram data set). 
In the same way that large-scale col-
lections of DNA sequences can reveal 
patterns in biology, high-volume lin-
guistic data can aid the analysis of 
human culture. For example, Michel 
and Aiden examined changes in the 
trajectory of fame over the past two 
centuries by counting occurrences 
of celebrity names. According to the 
n-gram analysis, modern celebrities 
come to public attention at an earlier 
age, and their fame grows faster, but 
they fade faster, too. “In the future, 
everyone will be famous for 7.5 min-
utes,” they remark (attributing the 
quote to “Whatshisname”).

Another study looked at linguistic 
evidence of censorship and political re-
pression. In English, the frequency of 
the name Marc Chagall grows steadily 
throughout the 20th century, but in Ger-
man texts it disappears almost entirely 
during the Nazi years, when the artist’s 
work was deemed “degenerate.” Simi-
lar cases of suppression were found in 
China, Russia and the United States. 
(The American victims were the Holly-
wood 10—writers and directors black-
listed from 1947 until 1960 because of 
supposed Communist sympathies.)

Having found that known cases of 
censorship or suppression could be 
detected in the n-gram data, Michel 
and Aiden then asked whether new in-
stances could be identified by search-
ing among the millions of time series 
for those with a telltale pattern. In the 
case of the Nazi era, the team devised 
a “suppression index” that compares 
n-gram frequencies before, during and 
after the Hitler years. Starting with a 
list of 56,500 names of people, they 
found that almost 10 percent showed 
evidence of suppression in the Ger-
man-language data, but not in English.

The Oracle of N-grams
Reading about these experiments gave 
me the itch to try running some of 
my own. And it turns out that many 
interesting questions can be investi-
gated with little effort and no cost us-
ing the Google Ngram Viewer (http://
ngrams.googlelabs.com). The proto-
col for this service is simple: Type in 
a comma-separated series of n-grams, 
and get back a graph showing their 

frequency as a function of time. The 
frequencies are normalized to adjust 
for linguistic inflation—the expansion 
of the language as more books are 
published each year. The normalized 
frequency is the number of occurrenc-
es of an n-gram in a given year divided 
by the sum of all n-gram occurrences 
recorded in that year.

Shown below is the Ngram Viewer’s 
output in response to a simple query—
a list of six nouns. Interpreted with 
care, a chart like this one might tell us 
something about the shifting fortunes 
of scientific disciplines—but the care-
ful interpretation is crucial. This is a 
popularity contest among words, not 
among the concepts they denote. From 
the graph it would appear that Biology 
did not exist before about 1840—and 
that’s close to the truth if we’re speak-
ing of the word itself. But the science 
of living things goes back further.

The curves have some curious fea-
tures that I can’t explain, such as syn-
chronized humps in about 1815 and 
1875. Was there a real (but short-lived) 
upsurge in publishing books on the 
sciences in those years? Or are we see-
ing some artifact of librarianship or the 
selection process? The geology curve 
appears to have a persistent oscilla-
tion with a period of roughly 20 years. 
What, if anything, is that about?

The same query words without the 
initial capital letters yield somewhat 
different results. So do the correspond-
ing agent nouns—astronomer, biologist, 
and so forth.

The Ngram Viewer can become an 
absorbing (and time-consuming) en-
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Trends in word usage are traced across the centuries in a database built from the text of more than five million books, digitized as part of the 
Google Books project. The curves were drawn by the Ngram Viewer, an online tool available at http://ngrams.googlelabs.com. The frequency of 
each word is calculated as a proportion of all words published each year. For example, the word Physics was counted 55,757 times in books pub-
lished in 1997; the total number of word occurrences in that year was 5,395,715,208, giving Physics a normalized frequency just over 0.001 percent. 
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tertainment. You might even turn it 
into a party game: One player draws 
the graph, the others try to guess the 
query. But less-frivolous applications 
are also within reach. Here’s one pos-
sibility: With well-crafted queries, it 
might be possible to gauge the pen-
etration of various foreign languages 
into English publications (or vice ver-
sa). From a very small sample, I get 
the impression that the frequency of 
German words in English text sagged 
during the World Wars, whereas Rus-
sian peaked in the Cold War.

Terror of Terabytes
The Viewer is an excellent oracle for 
the n-gram data, but it answers just 
one kind of question: How has the 
frequency of a specific n-gram var-
ied over time? Many other questions 
cannot be expressed in this form. You 
might want to know which n-grams 
are the most common, or how word 
frequency varies as a function of word 
length, or which words entered the 
printed record first. To answer these 
questions and others like them, you’ll 
have to work a little harder. For start-
ers, you’ll have to download the data, 
which is not a trivial undertaking. 

The complete set of English n-
grams weighs in at 340 gigabytes of 
compressed files, which expand to fill 
2.5 terabytes of disk space. I have not 

yet tried to swallow all that data; do-
ing anything interesting with it would 
require more hardware. I have been 
working solely with the English 1-gram 
files, which amount to 10 gigabytes 
when decompressed. I’ve been able to 
manage them on a laptop, although I’ve 
needed a refresher course in “external” 
algorithms—those that manipulate 
data on disk rather than in main mem-
ory. (This was a common practice when 
memory topped out at 64 kilobytes, but 
that was a long time ago.)

The 1-gram data are scattered over 
10 files, which I merged into one. Then 
I set about gathering some basic facts 
and figures. In the English 1-gram data 
set there are 7,380,256 unique words, 
which occur a total of 359,675,008,445 
times. Thus the mean number of oc-
currences per word is 48,735—but 
that’s a somewhat misleading num-
ber, because the distribution is highly 
skewed. (The top 100 words account 
for half of all word occurrences.) A 
more meaningful statistic is the me-
dian, which is 166.

Which are the most common 
1-grams? Setting aside a few common 
marks of punctuation, the highest-fre-
quency words are: the, of, and, to, in, a, 
is, that, for, was. Another trivia ques-
tion: What’s the longest word in the 
corpus? I think the longest that’s really 
a word and that wasn’t invented just 

to set records is phosphoribosylamino-
imidazolecarboxamide.

Prowling around in the data with a 
text editor reveals a multitude of oddi-
ties. Choose an entry at random, and 
it’s likely to be a word you’ve never 
seen before. Indeed, there’s a good 
chance it’s not a word at all in the strict 
sense, but rather a number or a mix-
ture of letters and digits, or something 
even more mysterious. For example, 
my eye fell on this curious “word”:

BOBCATEWLLYUWXCARACALQW

How could such a zany-looking string 
of letters turn up at least 40 times in 
published books? As it happens, we 
have a tool for answering such ques-
tions, namely Google Books. Since the 
Google OCR program produced this 
string, the Books search engine should 
be able to find it. And there it is: a row 
of letters in a word-search game—a 
game that has apparently been reprint-
ed in dozens of puzzle books.

The Book of Numbers
On looking at the numbers included 
in the n-gram archive, I was surprised 
at first by their abundance. Of the 
7.4 million unique 1-grams, about 7 
percent are numbers or numberlike 
strings of digits. But the explanation 
is straightforward: Numbers have 
higher entropy than words. Only a 
tiny fraction of all possible sequences 
of letters make a meaningful word, 
but almost any combination of digits 
is a properly formed number. Thus 
for a given total quantity of numbers, 
we can expect to find greater variety.

To look more closely at the numeric 
1-grams, I had to decide exactly what 
I would accept as a number. The OCR 
system allows mixed strings of let-
ters and digits (1Deut, Na2SO4), but 
I wanted to consider just “pure” num-
bers, those that denote a definite nu-
meric value or magnitude. I decided 
to accept any sequence of characters 
consisting entirely of digits or digits 
with a single embedded decimal point. 
The OCR program also accepts num-
bers preceded by a “$” sign, so I col-
lected those dollar amounts too, but in 
a separate file.

Many different numerals can repre-
sent the same number: 01, 1, 1.0, 1.00 
and 1.000 are all listed separately in 
the 1-gram files, but they all designate 
the same mathematical magnitude. I 
consolidated these items under the ca-
nonical value 1.0, and merged their 
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Overall growth of the English language can be seen in both the number of distinct words (blue 
curve and left scale) and the number of times those words appear in the corpus (red curve and 
right scale). Both curves have a noticeable change of slope after World War II. The number 
of distinct words rises to 6 million in 2008, and the number of word occurrences approaches 
14 billion. The database counts every spelling and capitalization variant separately, and also 
includes numbers, foreign words that appear in English books and much else.
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yearly occurrence data into a single 
record. This procedure is not without 
drawbacks, in that it treats as numbers 
some items that aren’t meant to des-
ignate a numeric value, such as Zip 
codes. But I don’t know how to weed 
out those items.

The number list I compiled has 
458,794 unique values. The smallest 
is necessarily 0, since the OCR process 
strips away any minus signs. What’s 
the largest entry? It’s the number 
formed by repeating the digit 7 exactly 
80 times. When I looked up the origin 
of this curious value, I discovered im-
ages of computer punch cards, with 
labeled rows of 80 columns.

The first thing I did with the num-
bers was check to see if they obey 
 Benford’s law, which describes the dis-
tribution of first digits in most of the 
numbers we meet in everyday life, such 
as those in stock-market tables. The 
law predicts that 1 is the most common 
leading digit, with higher digit values 
getting progressively rarer. In the the-
oretical distribution the frequency of 
digit d is proportional to log10(1+1/d). 

When I tested the 1-gram numbers 
against the predictions of Benford’s law, 
the result was inconclusive. As expect-
ed, smaller first-digit values are more 
common among the 1-grams, but the 
preference for 1 is even more exagger-
ated than the Benford distribution pre-
dicts. The first digit should be a 1 about 
30 percent of the time, but the actual 
frequency is 43 percent. Maybe those 
Zip codes are causing trouble?

I have another hypothesis: The dis-
tortion is caused by the times we live 
in! High on the list of popular numbers 
are values that look like years, almost 
all of which begin with 1. Numbers 
such as 2000, 1990, 1992 and 1980 are 
roughly 100 times more frequent than 
other four-digit numbers. To test my 
hypothesis I created an altered data 
set in which all numbers in the range 
1800–1999 have their frequency arti-
ficially reduced by a factor of 1/100. 
The result is considerably closer to the 
Benford distribution, with 1 having a 
frequency of 34 percent (see illustration 
at right).

Something else revealed by this 
collection of numeric data is the ex-
traordinary human fondness for round 
numbers. The illustration at the top of 
this page plots the abundance of the 
first 100 integers. For the most part, 
frequency decreases with increas-
ing magnitude, but numbers that are 

“rounder”—divisible by 10, or if not 
by 10 then by 5—stand out above the 
crowd. (Also note that the integers 7 
and 11, which by some vague measure 
might be taken as the least round num-
bers, are curiously depressed.) 

Dollar amounts are even more 
dramatically biased in favor of well-
rounded numbers. I had expected the 
monetary subset to be full of numbers 
ending in 99. Maybe that will be the 
case if we ever get an archive of junk 
mail and supermarket advertising, but 
in books there’s a distinct preference for 
trailing zeros. The most popular dollar 
amounts are 1, 100, 2, 5, 10, 1000, 10000.

Quickfilver
Michel and Aiden set out to study lan-
guage and culture, but they have also 
created a resource for the study of op-
tical character recognition.

Based on a random sample from 
the 1-gram files, I estimate that 15 per-
cent of the entries are affected in some 
way by OCR errors or anomalies. This 
sounds horrendous, but it does not 
mean that the OCR program made 
mistakes on 15 percent of the words it 
read; the word-recognition error rate 
is probably well under 1 percent. The 
problem is that there’s only one way 
to read a word correctly, but there are 
countless ways to go wrong. Suppose 
the program reads 1,000 words and 
gets 990 of them right. If it makes a dif-
ferent mistake on each of the remain-

ing 10 words, then the final list has 11 
entries, 10 of which are erroneous.

Because of this effect, efforts to tidy 
up OCR errors would not only im-
prove the accuracy of the data set but 
would also reduce its bulk. Entries for 
Rccovery, Reeovery, Reoovery, Rerovery 
and Revovery could all be merged into 
Recovery. But making such repairs is a 
daunting task, especially if you want 
to preserve other variations and errors, 
introduced not by the OCR process but 
by authors and printers.

Consider: bomemaker is probably 
an OCR error; invertibrate is probably 
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Numbers included in the book-scan data reveal distinctive patterns of preference. Small num-
bers are more common than large ones, and round numbers (divisible by 10 or by 5) stand out 
above their neighbors. The data shown are for the integers from 0 through 100, but similar 
patterns are also observed elsewhere on the number line and at many scales.

Leading digits of numbers in large collections 
are expected to follow Benford’s law, defined 
here by the black stair steps. The Google 
Books numbers (blue stalks) have an excess 
of initial 1s. De-emphasizing year numbers of 
the 19th and 20th centuries yields a distribu-
tion closer to the expected shape (red stalks).
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a human error; cerimoniale is probably 
not English. What about haccalaureate? 
Is that an OCR error or is it a degree 
granted by a programming school? A 
human reader can make judgments in 
such cases, but hand-grooming multi-
gigabyte files is not an attractive pros-
pect. We need a mechanized solution.

A few special cases look doable. The 
OCR program has encoded some in-
stances of “fi” and “fl” as ligatures, 
combining the two letters into a single 
character, while other instances remain 
as pairs of letters. For most uses of the 
data set, it would probably be better to 
treat all these cases consistently; this 
seems easy to accomplish. 

More challenging but perhaps still 
within reach is the problem of “ſ ,” the 
“long s” that was part of English or-
thography through the 18th century. 
OCR programs (like many human 
readers) tend to interpret this char-
acter as the letter “f,” leading to an 
abundance of comical fricative spell-
ings such as quickfilver and abfceffes. 
I ſuſpect that an algorithm could 
ſucceſ ſfully correct a large fraction of 
these misreadings without turning too 
many flaws into slaws. The idea is to 
make a change only when the “s” form 
of a word is substantially more com-
mon than the “f” form and when the 
“f” version has a strong peak of popu-

larity before 1800. But I have not yet 
tried implementing this algorithm, so 
I don’t know how many new errors it 
will introduce.

With other OCR quirks, the chrono-
logical clue is lacking, and so we must 
resort to blunter tools such as a matrix 
estimating the probability that any one 
character will be mistaken for another. 
No doubt much can be accomplished 
in this way. On the other hand, if these 
mistakes were easy to fix, they would 
have been fixed already.

The Library of Babble
Suppose we had a magically cleansed 
version of the Harvard-Google data-
base, free of all OCR errors. Would the 
time-series graphs from the Ngram 
Viewer look much different? I doubt 
it. Thus for present purposes the noise 
introduced by the OCR process is a 
minor distraction we can safely ignore.

But there are purposes beyond the 
present ones. Google has announced 
the grandiose goal of digitizing all the 
world’s books. They may succeed. 
Some of those books may survive only 
in digital versions. And someone may 
even want to read them! If the scan-
ning protocol now in use is the main 
channel by which we are to transmit 
600 years of human culture to future 
generations, there’s reason to worry.

But for the moment I am not in-
clined to complain. The n-gram collec-
tion released by the Harvard-Google 
team is a marvelous gift. I would 
much rather have it now than wait for 
some unattainable level of perfection. 
And now that it’s been made public, 
it’s ours as well as theirs, and we can 
all help improve it.
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A study of errors and oddities introduced by optical character recognition began by selecting a single word, separate, and then finding all 
other words in the database that can be produced by changing exactly one letter of separate; 65 such terms are present. Here the frequency of 
each word is encoded in its type size, which is proportional to the logarithm of the word’s total abundance. (The main entry, separate, appears 
27,528,661 times; the rarest forms, 42 times.) Consulting images of pages in Google Books showed which forms were likely to be OCR errors 
and which had other explanations. For example, seperate is a frequent spelling mistake, but sepatate and scparate are more likely to be machine 
misreadings. More than 60,000 errors are caused by mistaking the 18th-century long s for an f or another letter. And some of the variants are not 
errors at all: separase is the name of an enzyme, and separare is an Italian verb. Correcting all the errors would have only a tiny effect on the 
frequency ascribed to separate; on the other hand, it would purge the database of more than 40 spurious words.
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