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An Adventure in the Nth Dimension

Brian Hayes

The area enclosed by a circle is 
πr2. The volume inside a sphere 

is 4∕3πr3. These are formulas I learned too 
early in life. Having committed them to 
memory as a schoolboy, I ceased to ask 
questions about their origin or mean-
ing. In particular, it never occurred to 
me to wonder how the two formulas 
are related, or whether they could be 
extended beyond the familiar world 
of two- and three-dimensional objects 
to the geometry of higher-dimensional 
spaces. What’s the volume bounded 
by a four-dimensional sphere? Is there 
some master formula that gives the mea-
sure of a round object in n dimensions?

Some 50 years after my first expo-
sure to the formulas for area and vol-
ume, I have finally had occasion to look 
into these broader questions. Finding 
the master formula for n-dimensional 
volumes was easy; a few minutes with 
Google and Wikipedia was all it took. 
But I’ve had many a brow-furrowing 
moment since then trying to make 
sense of what the formula is telling me. 
The relation between volume and di-
mension is not at all what I expected; 
indeed, it’s one of the zaniest things I’ve 
ever come upon in mathematics. I’m 
appalled to realize that I have passed 
so much of my life in ignorance of this 
curious phenomenon. I write about it 
here in case anyone else also missed 
school on the day the class learned n-
dimensional geometry.

Lost in Space
In those childhood years when I was 
memorizing volume formulas, I also 
played a lot of ball games. Often the 
game was delayed when we lost the 
ball in the weeds beyond right field. I 
didn't know it then, but we were lucky 

we played on a two-dimensional field. 
If we had lost our ball in a space of 
many dimensions, we might still be 
looking for it.

The mathematician Richard Bell-
man labeled this effect “the curse of 
dimensionality.” As the number of 
spatial dimensions goes up, finding 
things or measuring their size and 
shape gets harder. This is a matter of 
practical consequence, because many 
computational tasks are carried out in 
a high-dimensional setting. Typically 
each variable in a problem description 
is mapped to a separate dimension.

A few months ago I was prepar-
ing an illustration of Bellman’s curse 
for an earlier Computing Science col-
umn. My first thought was to show 
the ball-in-a-box phenomenon. Put an 
n-dimensional ball in an n-dimension-
al cube just large enough to receive 
it. As n increases, the fraction of the 
cube’s volume occupied by the ball 
falls dramatically.

In the end I chose a different and 
simpler scheme for the illustration. But 
after the column appeared [“Quasi-
random Ramblings,” July–August], I 
returned to the ball-in-a-box question 
out of curiosity. I had long thought that 
I understood it, but I realized that I had 
almost no quantitative data on the rela-
tive size of the ball and the cube.

(In this context “ball” is not just a 
plaything but also the mathemati-

cal term for a solid spherical object. 
“Sphere” itself is generally reserved 
for a hollow shell, like a soap bubble. 
More formally, a sphere is the locus 
of all points whose distance from the 
center is equal to the radius r. A ball 
is the locus of points whose distance 
from the center is less than or equal 
to r. And while I’m trudging through 
this mire of terminology, I should men-
tion that “n-ball” and “n-cube” refer 
to an n-dimensional object inhabiting 
n-dimensional space. This may seem 
too obvious to bother stating, but 
some branches of mathematics adopt 
a different convention. In topology, a 
2-sphere lives in 3-space.)

The Master Formula
An n-ball of radius 1 (a “unit ball”) 
will just fit inside an n-cube with 
sides of length 2. The surface of the 
ball kisses the center of each face of 
the cube. In this configuration, what 
fraction of the cubic volume is filled 
by the ball?

The question is answered easily in 
the familiar low-dimensional spaces 
we are all accustomed to living in. At 
the bottom of the hierarchy is one-
dimensional geometry, which is rather 
dull: Everything looks like a line seg-
ment. A 1-ball with r = 1 and a 1-cube 
with s = 2 are actually the same object—
a line segment of length 2. Thus in one 
dimension the ball completely fills the 
cube; the volume ratio is 1.0. 

In two dimensions, a 2-ball inside a 
2-cube is a disk inscribed in a square, 
and so this problem can be solved with 
one of my childhood formulas. With 
r = 1, the area πr2 is simply π, whereas 
the area of the square, s2, is 4; the ratio 
of these quantities is about 0.79.

In three dimensions, the ball’s vol-
ume is 4∕3π, whereas the cube has a vol-
ume of 8; this works out to a ratio of 
approximately 0.52. 

On the basis of these three data points, 
it appears that the ball fills a smaller and 
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smaller fraction of the cube as n increas-
es. There’s a simple, intuitive argument 
suggesting that the trend will continue: 
The regions of the cube that are left va-
cant by the ball are the corners. Each 
time n increases by 1, the number of 
corners doubles, so we can expect ever 
more volume to migrate into the nooks 
and crannies near the cube’s vertices.

To go beyond this appealing but non-
quantitative principle, I would have to 
calculate the volume of n-balls and n-
cubes for values of n greater than 3. 
The calculation is easy for the cube. An 
n-cube with sides of length s has vol-
ume sn. The cube that encloses a unit 
ball has s = 2, so the volume is 2n.

But what about the n-ball? As I have 
already noted, my early education 
failed to equip me with the necessary 
formula, and so I turned to the Web. 
What a marvel it is! (And it gets better 
all the time.) In two or three clicks I 
had before me a Wikipedia page titled 
“Deriving the volume of an n-ball.” 
Near the top of that page was the for-
mula I sought:

V(n, r ) = π
n
2 rn

Γ( n
2 + 1)

.

Later in this column I’ll say a few 
words about where this formula came 
from, both mathematically and histori-
cally, but for now I merely note that the 
only part of the formula that ventures 
beyond routine arithmetic is the gamma 
function, Γ, which is an elaboration on 
the idea of a factorial. For positive inte-
gers, Γ(n+1) = n! = 1×2×3×...×n. But 

the gamma function, unlike the facto-
rial, is also defined for numbers oth-
er than integers. For example, Γ(½) is 
equal to √π–.

The Incredible Shrinking n-Ball
When I discovered the n-ball formula, 
I did not pause to investigate its prov-
enance or derivation. I was impatient 
to plug in some numbers and see what 
would come out. So I wrote a hasty 
one-line program in Mathematica and 
began tabulating the volume of a unit 
ball in various dimensions. I had defi-
nite expectations about the outcome. 
I believed that the volume of the unit 
ball would increase steadily with n, 
though at a lower rate than the volume 
of the enclosing s = 2 cube, thereby 
confirming Bellman’s curse of dimen-
sionality. Here are the first few results 
returned by the program:

n V(n,1)

≈
≈
≈
≈

1 2
2 π 3.1416
3 4

3 π 4.1888
4 1

2 π2 4.9348
5 8

15 π2 5.2638

I noted immediately that the val-
ues for one, two and three dimensions 
agreed with the results I already knew. 
(This kind of confirmation is always 
reassuring when you run a program 
for the first time.) I also observed that 
the volume was slowly increasing with 
n, as I had expected.

But then I looked at the continuation 
of the table:

n
1 2
2 π 3.1416
3 4

3 π 4.1888
4 1

2 π2 4.9348
5 8

15 π2 5.2638
6 1

6 π3 5.1677
7 16

105 π3 4.7248
8 1

24 π4 4.0587
9 32

945 π4 3.2985
10 1

120 π5 2.5502

V(n,1)

≈
≈
≈
≈
≈
≈
≈
≈
≈

Beyond the fifth dimension, the vol-
ume of a unit n-ball decreases as n in-
creases! I tried a few larger values of 
n, finding that V(20,1) is about 0.0258, 
and V(100,1) is in the neighborhood of 
10–40. Thus it looked very much like 
the n-ball dwindles away to nothing as 
n approaches infinity.

Doubly Cursed
I had thought that I understood Bell-
man’s curse: Both the n-ball and the 
n-cube grow along with n, but the cube 
expands faster. In fact, the curse is far 
more damning: At the same time the 
cube inflates exponentially, the ball 
shrinks to insignificance. In a space of 
100 dimensions, the fraction of the cubic 
volume filled by the ball has declined to 
1.8×10–70. This is far smaller than the 
volume of an atom in relation to the 

r = 1
r = 1

r = 1

s = 2s = 2

s = 2

1-ball in 1-cube

2-ball in 2-cube

3-ball in 3-cube

volume ratio = 1.0

volume ratio = 0.79 volume ratio = 0.52

Balls in boxes offer a simple system for studying geometry across a series of spatial dimensions. A ball is the solid object bounded by a sphere; 
the boxes are cubes with sides of length 2, which makes them just large enough to accommodate a ball of radius 1. In one dimension (left) the 
ball and the cube have the same shape: a line segment of length 2. In two dimensions (middle) and three dimensions (right) the ball and cube 
are more recognizable. As dimension increases, the ball fills a smaller and smaller fraction of the cube’s internal volume. In three dimensions 
the filled fraction is about half; in 100-dimensional space, the ball has all but vanished, filling only 1.8 × 10–70 of the cube’s volume.
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volume of the Earth. The ball in the box 
has all but vanished. If you were to se-
lect a trillion points at random from the 
interior of the cube, you’d have almost 
no chance of landing on even one point 
that is also inside the ball.

What makes this disappearing act 
so extraordinary is that the ball in 
question is still the largest one that 
could possibly be stuffed into the 
cube. We are not talking about a pea 
rattling around loose inside a refrig-
erator carton. The ball’s diameter is 
still equal to the side length of the 
cube. The surface of the ball touches 
every face of the cube. (A face of an n-
cube is an (n–1)-cube.) The fit is snug; 
if the ball were made even a smidgen 
larger, it would bulge out of the cube 
on all sides. Nevertheless, in terms 
of volume measure, the ball is nearly 
crushed out of existence, like a black 
hole collapsing under its own mass.

How can we make sense of this 
seeming paradox? One way of un-
derstanding it is to acknowledge that 
the ball fills the middle of the cube, 
but the cube doesn’t have much of 
a middle; almost all of its volume is 
away from the center, huddling in 
the corners. A simple counting argu-
ment gives a clue to what’s going on. 
As noted above, the ball touches the 
enclosing cube at the center of each 
face, but it does not reach out into the 
corners. A 100-cube has just 200 faces, 
but it has 2100 corners.

Another approach to understanding 
the collapse of the n-ball is to imag-
ine poking skewers through the cube 
along various diameters. (A diameter 
is any straight line that passes through 

the center point.) The shortest diam-
eters run from the center of a face to 
the center of the opposite face. For the 
cube enclosing a unit ball, the length 
of this shortest diameter is 2, which is 
both the side length of the cube and 
the diameter of the ball. Thus a skewer 
on the shortest diameter lies inside the 
ball throughout its length.

The longest diameters of the cube 
extend from a corner through the cen-
ter point to the opposite corner. For 
an n-cube with side length s = 2, the 
length of this diameter is 2√n–. Thus 
in the 100-cube surrounding a unit 
ball, the longest diameter has length 
20; only 10 percent of this length lies 
within the ball. Moreover, there are 
just 100 of the shortest diameters, but 
there are 299 of the longest ones.

Here is still another mind-bending 
trick with balls and boxes to suggest 
just how weird space becomes in higher 
dimensions. I learned of it from Barry 
Cipra, who published a description in 
Volume 1 of What’s Happening in the 
Mathematical Sciences (1991). On the 
plane, a square with sides of length 4 
will accommodate four unit disks in 
a two-by-two array, with room for a 
smaller disk in the middle; the radius 
of that smaller disk is √2

–
–1. In three 

dimensions the equivalent 3-cube fits 
eight unit balls, plus a smaller ninth ball 
in the middle, whose radius is √3

–
–1. In 

the general case of n dimensions, the 
box has room for 2n unit n-balls in a 
rectilinear array, with one additional 
ball in the vacant central space, and the 
central ball has a radius of √n– –1. Look 
what happens when n reaches 9. The 
“smaller” central ball now has a radius 

of 2, which makes it twice the size of 
the 512 surrounding balls. Furthermore, 
the central ball has expanded to reach 
the sides of the bounding box, and will 
burst through the walls with any fur-
ther increase in dimension.

What’s So Special About the 5-Ball?
I was taken by surprise when I learned 
that the volume of a unit n-ball goes to 
zero as n goes to infinity; I had expect-
ed the opposite. But something else 
surprised me even more—the fact that 
the volume function is not monotonic. 
Either a steady increase or a steady 
decrease seemed more plausible than 
having the volume grow for a while, 
then reach a peak at some finite value 
of n, and thereafter decline. This be-
havior singles out a particular dimen-
sion for special attention. What is it 
about five-dimensional space that al-
lows a unit 5-ball to spread out more 
expansively than any other n-ball? 

I can offer an answer, although it 
doesn’t really explain much. The answer 
is that everything depends on the value 
of π. Because π is a little more than 3, the 
volume peak comes in five dimensions; 
if π were equal to 17, say, the unit ball 
with maximum volume would be found 
in a space with 33 dimensions.

To see how π comes to have this role, 
we’ll have to return to the formula 
for n-ball volume. We can get a rough 
sense of the function’s behavior from 
a simplified version of the formula. 
In the first place, if we are interested 
only in the unit ball, then r is always 
equal to 1, and the rn term can be ig-
nored. That leaves a power of π in the 
numerator and a gamma function in 
the denominator. If we consider only 
even values of n, so that n/2 is always 
an integer, we can replace the gamma 
function with a factorial. For brevity, 
let m = n/2; then all that remains of the 
formula is this ratio: πm/m!. 

The simplified formula says that the 
n-ball volume is determined by a race 
between πm and m!. Initially, for the 
smallest values of m, πm sprints ahead; 
for example, at m = 2 we have π2 ≈ 10, 
which is greater than 2! = 2. In the long 
run, however, m! will surely win this 
race. Both πm and m! are products of 
m factors, but in πm the factors are all 
equal to π, whereas in m! they range 
from 1 up to m. Numerically, m! first 
exceeds πm when m = 7, and thereafter 
the factorial grows very much larger.

This simplified analysis accounts 
for the major features of the volume 

The volume of a unit ball in n dimensions reveals an intriguing spectrum of variations. Up 
to dimension 5, the ball’s volume increases with each increment to n; then the volume starts 
diminishing again, and ultimately goes to zero as n goes to infinity. If dimension is considered 
a continuous variable, the peak volume comes at n=5.2569464 (green dot).
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curve, at least in a qualitative way. The 
volume of a unit ball has to go to zero 
in infinite-dimensional space because 
zero is the limit of the ratio πm/m!. In 
low dimensions, on the other hand, 
the ratio is increasing with m. And if 
it’s going uphill for small m and down-
hill for large m, there must be some 
intermediate value where the function 
reaches a maximum.

To get a quantitative fix on the loca-
tion of maximum, we must return to 
the formula in its original form and 
consider odd as well as even num-
bers of dimensions. Indeed, we can 
take a step beyond mere integer di-
mensions. Because the gamma func-
tion is defined for all real numbers, we 
can treat dimension as a continuous 
variable and ask with finer resolution 
where the maximum volume occurs. 
A numerical solution to this calculus 
problem—found with further help 
from Mathematica—shows a peak in 
the volume curve at n ≈ 5.2569464; at 
this point the unit ball has a volume of 
5.2777680.

With a closely related formula, we 
can also calculate the surface area of an 
n-ball. Like the volume, this quantity 
reaches a peak and then falls away to 
zero. The maximum is at n ≈ 7.2569464, 
or in other words two dimensions 
larger than the volume peak.

The Dimensions of the Problem
The arithmetic behind all these results 
is straightforward; attaching meaning 
to the numbers is not so easy. In par-
ticular, I can see numerically—by com-
paring powers of π with factorials—
why the unit ball’s volume reaches a 
maximum at n = 5. But I have no geo-
metric intuition about five-dimension-
al space that would explain this fact. 
Perhaps readers with deeper vision 
will be able to provide some insight.

The results on noninteger dimen-
sions are quite otherworldly. The no-
tion of fractional dimensions is famil-
iar enough, but it is generally applied 
to objects, not to spaces. For example, 
the Sierpinsky triangle, with its end-
lessly nested holes within holes, is as-
signed a dimension of 1.585, but the 
triangle is still drawn on a plane of 
dimension 2. What would it mean to 
construct a space with 5.2569464 mu-
tually perpendicular coordinate axes? 
I can’t imagine—and that’s not just a 
figure of speech.

Another troubling question is 
whether it really makes sense to com-

pare volumes across dimensions. Each 
dimension requires its own units of 
measure, and so the relative magni-
tudes of the numbers attached to those 
units don’t mean much. Is a disk of 
area 10 square centimeters larger or 
smaller than a ball of volume 5 cubic 
centimeters? We can’t answer; it’s like 
comparing apples and orange juice.

Nevertheless, I believe there is indeed 
a valid basis for making comparisons. 
In each dimension volume is to be mea-
sured in terms of a standard volume in 
that dimension. The obvious standard 
is the unit cube (sometimes called the 
“measure polytope”), which has a vol-
ume of 1 in all dimensions. Starting at 
n = 1, the unit ball is larger than the unit 
cube, and the ball-to-cube ratio gets still 
still larger through n = 5; then the trend 

reverses, and eventually the ball is much 
smaller than the unit cube. This chang-
ing ratio of ball volume to cube volume 
is the phenomenon to be explained.

Slicing the Onion
The volume formulas I learned as a 
child were incantations to be memo-
rized rather than understood. I would 
like to do better now. Although I can-
not give a full derivation of the n-ball 
formula—for lack of both space and 
mathematical acumen—perhaps the 
following remarks will shed some light.

The key idea is that an n-ball has 
within it an infinity of (n–1)-balls. 
For example, a series of parallel slices 
through the body of an onion turns a 
3-ball into a stack of 2-balls. Another set 
of cuts, perpendicular to the first series, 

The graph of n-ball volume as a function of dimension was plotted more than 100 years ago 
by Paul Renno Heyl, who was then a graduate student at the University of Pennsylvania. The 
volume graph is the lower curve, labeled “content.” The upper curve gives the ball’s surface 
area, for which Heyl used the term “boundary.” The illustration is from Heyl’s 1897 thesis, 
“Properties of the locus r = constant in space of n dimensions.”
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reduces each disklike slice to a collec-
tion of 1-balls—linear ribbons of onion. 
If you go on to dice the ribbons, you 
have a heap of 0-balls. (With real on-
ions and knives these operations only 
approximate the forms of true n-balls, 
but the methods work perfectly in the 
mathematical kitchen.)

This decomposition suggests a re-
cursive algorithm for computing the 
volume of an n-ball: Slice it into many 
(n–1)-balls and sum up the volumes 
of the slices. How do you compute the 
volumes of the slices? Apply the same 
method, cutting the (n–1)-balls into 
(n–2)-balls. Eventually the recursion 
bottoms out at n = 1 or n = 0, where 
the answers are known. (The volume 
of a 1-ball is 2r; the 0-ball is assigned a 
volume of 1.) Letting the thickness of 
the slices go to zero turns the sum into 
an integral and leads to an exact result.

In practice, it’s convenient to use a 
slightly different recursion with a step 
size of 2. That is, the volume of an n-ball 
is computed from that of an (n–2)-ball. 
The specific rule is: Given the volume 
of an (n–2)-ball, multiply by 2πr2/n to 
get the volume of the corresponding 
n-ball. (Showing why the multiplicative 
factor takes this particular form is the 
hard part of the derivation, which I am 
going to gingerly avoid; it requires an 
exercise in multivariable calculus that 
lies beyond my abilities.) 

The procedure is easy to express in 
the form of a computer program:

		 function V(n,r)
			  if n = 0 then return 1
			  elseif n = 1 then return 2r
			  else return 
				   2πr2/n × V(n–2,r)

For even n, the sequence of operations 
carried out by this program amounts to:

1× 2πr2

2
× 2πr2

4
× 2πr2

6
×· · ·× 2πr2

n
.

For odd n, the result is instead the 
product of these terms:

2r × 2πr2

3
× 2πr2

5
× 2πr2

7
×· · ·× 2πr2

n
.

For all integer values of n the program 
yields the same output as the formula 
based on the gamma function.

Who Done It?
A question I cannot answer with cer-
tainty is who first wrote down the n-
ball formula. I have paddled up a long 
river of references, but I’m not sure I 
have reached the true source.

My journey began with the num-
ber 5.2569464. I entered the digits into 
the On-Line Encyclopedia of Integer 
Sequences, the vast compendium 
of number lore created by Neil J. A. 
Sloane. I found what I was looking 
for in sequence A074455. A reference 
there directed me to Sphere Packings, 
Lattices, and Groups, by John Horton 
Conway and Sloane. That book in turn 
cited An Introduction to the Geometry 
of N Dimensions, by Duncan Sommer-
ville, published in 1929. The Sommer-
ville book devotes a few pages to the 
n-ball formula and has a table of val-
ues for dimensions 1 through 7, but 
it says little about origins. However, 
further rooting in library catalogs re-
vealed that Sommerville—a Scottish 
mathematician who emigrated to New 
Zealand in 1915—also published a 
bibliography of non-Euclidean and n-
dimensional geometry.

The bibliography lists five works on 
“hypersphere volume and surface”; 
the earliest is a problem and solution 
published in 1866 by William Kingdon 
Clifford, a brilliant English geometer 
who died young. Clifford’s derivation 
of the formula is clearly original work, 
but it was not the first.

Elsewhere Sommerville mentions the 
Swiss mathematician Ludwig Schläfli 
as a pioneer of n-dimensional geometry. 
Schläfli’s treatise on the subject, written 
in the early 1850s, was not published 
in full until 1901, but an excerpt trans-
lated into English by Arthur Cayley ap-
peared in 1858. The first paragraph of 
that excerpt gives the volume formula 
for an n-ball, commenting that it was 
determined “long ago.” An asterisk 
leads to a footnote citing papers pub-
lished in 1839 and 1841 by the Belgian 
mathematician Eugène Catalan.

Looking up Catalan’s articles, I 
found that neither of them gives the 
correct formula in full, although they’re 
close. Catalan deserves partial credit.

Not one of these early works paus-
es to comment on the implications of 
the formula—the peak at n = 5 or the 
trend toward zero volume in high di-
mensions. Of the works mentioned by 
Sommerville, the only one to make these 
connections is a thesis by Paul Renno 
Heyl, published by the University of 
Pennsylvania in 1897. This looked like 
a fairly obscure item, but with help from 
Harvard librarians, the volume was 
found on a basement shelf. I later dis-
covered that the full text (but not the 
plates) is available on Google Books. 

Heyl was a graduate student at the 
time of this work. He went on to a career 
with the National Bureau of Standards, 
and he was also a writer on science, phi-
losophy and religion. (His best-known 
book was The Mystery of Evil.)

In the 1897 thesis Heyl derives for-
mulas for both volume and surface area 
(which he calls “content” and “bound-
ary”), and gives a lucid account of mul-
tidimensional geometry in general. He 
clearly appreciates the strangeness of 
the discovery that “… in a space of in-
finite dimension our locus can have no 
content at all.” I will allow Heyl to have 
the last word on the subject:

We might be pardoned for sup-
posing that in a space of infinite 
dimension we should find the 
Absolute and Unconditioned if 
anywhere, but we have reached 
an opposite conclusion. This is the 
most curious thing I know of in 
the Wonderland of Higher Space.
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