
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

364 American Scientist, Volume 97

Computing Science

© 2009 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

The Higher Arithmetic

Brian Hayes

Last year the National Debt
Clock in New York City ran

out of digits. The billboard-size elec-
tronic counter, mounted on a wall near
Times Square, overflowed when the
public debt reached $10 trillion, or
1013 dollars. The crisis was resolved by
squeezing another digit into the space
occupied by the dollar sign. Now a
new clock is on order, with room for
growth; it won’t fill up until the debt
reaches a quadrillion (1015) dollars.

The incident of the Debt Clock brings
to mind a comment made by Richard
Feynman in the 1980s—back when mere
billions still had the power to impress:

There are 1011 stars in the galaxy.
That used to be a huge number.
But it’s only a hundred billion.
It’s less than the national deficit!
We used to call them astronomi-
cal numbers. Now we should call
them economical numbers.

The important point here is not that
high finance is catching up with the
sciences; it’s that the numbers we en-
counter everywhere in daily life are
growing steadily larger. Computer
technology is another area of rapid nu-
meric inflation. Data storage capacity
has gone from kilobytes to megabytes
to gigabytes, and the latest disk drives
hold a terabyte (1012 bytes). In the
world of supercomputers, the current
state of the art is called petascale com-
puting (1015 operations per second),
and there is talk of a coming transi-
tion to exascale (1018). After that, we
can await the arrival of zettascale (1021)
and yottascale (1024) machines—and
then we run out of prefixes!

Even these numbers are puny com-
pared with the prodigious creations of

pure mathematics. In the 18th century
the largest known prime number had
10 digits; the present record-holder
runs to almost 13 million digits. The
value of π has been calculated to a
trillion digits—a feat at once magnifi-
cent and mind-numbing. Elsewhere
in mathematics there are numbers so
big that even trying to describe their
size requires numbers that are too big
to describe. Of course none of these
numbers are likely to turn up in ev-
eryday chores such as balancing a
checkbook. On the other hand, log-
ging into a bank’s web site involves
doing arithmetic with numbers in the
vicinity of 2128, or 1038. (The calcula-
tions take place behind the scenes, in
the cryptographic protocols meant to
ensure privacy and security.)

Which brings me to the main theme
of this column: Those streams of digits
that make us so dizzy also present chal-
lenges for the design of computer hard-
ware and software. Like the National
Debt Clock, computers often set rigid
limits on the size of numbers. When
routine calculations begin to bump up
against those limits, it’s time for a re-
thinking of numeric formats and algo-
rithms. Such a transition may be upon
us soon, with the approval last year of
a revised standard for one common
type of computer arithmetic, called
floating point. Before the new standard
becomes too deeply entrenched, per-
haps it’s worth pausing to examine a

few alternative schemes for computing
with astronomical and economical and
mathematical numbers.

Numerical Eden
In their native habitat—which is not the
digital computer—numbers are bound-
less and free-ranging. Along the real
number line are infinitely many inte-
gers, or whole numbers. Between any
two integers are infinitely many ratio-
nal numbers, such as 3⁄2 and 5⁄4. Between
any two rationals are infinitely many
irrationals—numbers like √2

–
 or π.

The reals are a Garden of Eden for
doing arithmetic. Just follow a few
simple rules—such as not dividing by
zero—and these numbers will never
lead you astray. They form a safe,
closed universe. If you start with any
set of real numbers, you can add and
subtract and multiply all day long—
and divide, too, except by zero—and at
the end you’ll still have real numbers.
There’s no risk of slipping through the
cracks or going out of bounds.

Unfortunately, digital computers ex-
ist only outside the gates of Eden. Out
here, arithmetic is a treacherous pro-
cess. Even simple counting can get you
in trouble. With computational num-
bers, adding 1 over and over eventu-
ally brings you to a largest number—
something unknown in mathematics.
If you try to press on beyond this limit,
there’s no telling what will happen.
The next number after the largest num-
ber might be the smallest number; or it
might be something labeled ∞; or the
machine might sound an alarm, or die
in a puff of smoke.

This is a lawless territory. On the
real number line, you can always rely
on principles like the associative law:
(a+b)+c = a+(b+c). In some versions
of computer arithmetic, that law breaks
down. (Try it with a = 1030, b = –1030,
c = 1.) And when calculations include ir-
rational numbers—well, irrationals just
don’t exist in the digital world. They

Brian Hayes is senior writer for American Scien-
tist. Additional material related to the “Computing
Science” column appears in Hayes’s blog at http://
bit-player.org. Address: 211 Dacian Avenue, Dur-
ham, NC 27701. Internet: brian@bit-player.org

How to count
to a zillion

without falling
off the end

of the number line

2009 September–October 365www.americanscientist.org © 2009 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

have to be approximated by rationals—
the very thing they are defined not to
be. As a result, mathematical identities
such as (√2

–
)2 = 2 are not to be trusted.

Bignums
The kind of computer arithmetic that
comes closest to the mathematical
ideal is calculation with integers and
rationals of arbitrary size, limited only
by the machine’s memory capacity. In
this “bignum” arithmetic, an integer
is stored as a long sequence of bits,
filling up as much space as needed. A
rational number is a pair of such inte-
gers, interpreted as a numerator and a
denominator.

A few primitive computers from the
vacuum-tube era had built-in hard-
ware for doing arithmetic on integers
of arbitrary size, but our sophisticated
modern machines have lost that ca-
pability, and so the process has to be
orchestrated by software. Adding two
integers proceeds piece by piece, start-
ing with the least-significant bits and
working right to left, much as a paper-
and-pencil algorithm sums pairs of
digits one at a time, propagating any
carries to the next column. The usual
practice is to break up the sequence of
bits into blocks the size of a machine
register—typically 32 or 64 bits. Algo-
rithms for multiplication and division
follow similar principles; operations
on rationals require the further step of
reducing a fraction to lowest terms.

Looking beyond integers and ra-
tionals, there have even been efforts
to include irrational numbers in exact
computations. Of course there’s no
hope of expressing the complete val-
ue of π or √2

–
 in a finite machine, but a

program can calculate the values in-
crementally, supplying digits as they
are needed—a strategy known as lazy
computing. For example, the asser-
tion π < 3.1414 could be tested—and
shown to be false—by generating the
first five decimal digits of π. Another
approach is to treat irrational num-
bers as unevaluated units, which are
carried through the computation from
start to finish as symbols; thus the cir-
cumference of a circle of unit radius
would be given simply as 2π.

The great virtue of bignum arith-
metic is exactness. If the machine ever
gives an answer, it will be the right
answer (barring bugs and hardware
failures). But there’s a price to pay: You
may get no answer at all. The program
could run out of memory, or it could

take so long that it exhausts human
patience or the human lifespan.

For some computations, exactness
is crucial, and bignum arithmetic is
the only suitable choice. If you want
to search for million-digit primes, you
have to look at every last digit. Sim-
ilarly, the security module in a web
browser must work with the exact val-
ue of a cryptographic key.

For many other kinds of computa-
tions, however, exactness is neither
needed nor helpful. Using exact ratio-
nal arithmetic to calculate the interest
on a mortgage loan yields an unwieldy
fraction accurate to hundreds of deci-
mal places, but knowing the answer
to the nearest penny would suffice. In
many cases the inputs to a computa-
tion come from physical measurements
accurate to no more than a few signifi-
cant digits; lavishing exact calculations
on these measurements cannot make
them any more accurate.

What’s the Point?
Most computer arithmetic is done not
with bignums or exact rationals but
with numbers confined to a fixed al-
lotment of space, such as 32 or 64 bits.
The hardware operates on all the bits
at once, so arithmetic can be very fast.
But an implacable law governs all such
fixed-size formats: If a number is rep-
resented by 32 bits, then it can take on

at most 232 possible values. You may be
able to choose which 232 values are in-
cluded, but there’s no way to increase
the size of the set.

For 32-bit numbers, one obvi-
ous mapping assigns the 232 bit pat-
terns to the integers from 0 through
4,294,967,295 (which is 232– 1). The
same range of integers could be shifted
along the number line, or the values
could be scaled to cover a smaller nu-
meric range in finer increments (per-
haps 0.00 up to 42,949,672.95) or spread
out over a wider range more sparsely.
Arithmetic done in this style is known
as “fixed point,” since the position of
the decimal point is the same in all
numbers of a given class.

Fixed-point arithmetic was once the
mainstay of numerical computing, and
it still has a place in certain applica-
tions, such as high-speed signal pro-
cessing. But the dominant format now
is floating point, where the decimal
point (or binary point) can be moved
around to represent a wide range of
magnitudes. The floating-point format
is based on the same idea as scientific
notation. Just as we can write a large
number succinctly as 6.02×1023, float-
ing-point arithmetic stores a number
in two parts: the significand (6.02 in
this example) and the exponent (23).

Designing a floating-point format
entails a compromise between range

Numerical overflow led to some quick re-engineering of the National Debt Clock, an electron-
ic billboard in Midtown Manhattan. The clock was designed to display 13 digits, with a dollar
sign in the leftmost position. In the fall of 2008, when the public debt crossed the $10 trillion
threshold, the dollar-sign position was commandeered for a 14th digit. According to news re-
ports, the clock will be replaced with a new model that won’t overflow until the debt reaches
$1 quadrillion. The photograph was made by Rafael Chamorro on November 29, 2008.

366 American Scientist, Volume 97 © 2009 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

and precision. Every bit allocated to
the significand doubles its precision;
but the bit has to be taken from the
exponent, and it therefore reduces the
range by half. For 32-bit numbers the
prevailing standard dictates a 24-bit
significand and an 8-bit exponent; a
few stray bits are lost to storing signs
and marking special cases, leaving an
effective range of 2–126 up to 2127. In
decimal notation the largest represent-
able number is about 3×1038. Standard
64-bit numbers allocate 53 bits to the
significand and 11 to the exponent, al-
lowing a range up to about 10308.

The idea of floating-point arithmetic
goes back to the beginning of the com-
puter age, but it was widely adopted
only in the 1980s. The key event was the
drafting of a standard, approved by the
Institute of Electrical and Electronic En-
gineers (IEEE) in 1985. This effort was
led by William Kahan of the University
of California, Berkeley, who remains a
strong advocate of the technology.

Early critics of the floating-point ap-
proach worried about efficiency and
complexity. In fixed-point arithmetic,
many operations can be reduced to a
single machine instruction, but float-
ing-point calculations are more in-
volved. First you have to extract the
significands and exponents, then op-
erate on these pieces separately, then
do some rounding and adjusting, and
finally reassemble the parts.

The answer to these concerns was to
implement floating-point algorithms
in hardware. Even before the IEEE

standard was approved, Intel designed
a floating-point coprocessor for early
personal computers. Later generations
incorporated a floating-point unit on
the main processor chip. From the
programmer’s point of view, floating-
point arithmetic became part of the
infrastructure.

Safety in Numbers
It’s tempting to pretend that floating-
point arithmetic is simply real-number
arithmetic in silicon. This attitude is
encouraged by programming languag-
es that use the label real for floating-
point variables. But of course floating-
point numbers are not real numbers; at
best they provide a finite model of the
infinite real number line.

Unlike the real numbers, the float-
ing-point universe is not a closed sys-
tem. When you multiply two floating-
point numbers, there’s a good chance
that the product—the real product, as
calculated in real arithmetic—will not
be a floating-point number. This leads
to three kinds of problems.

The first problem is rounding error.
A number that falls between two float-
ing-point values has to be rounded by
shifting it to one or the other of the
nearest representable numbers. The re-
sulting loss of accuracy is usually small
and inconsequential, but circumstanc-
es can conspire to produce numerical
disasters. A notably risky operation is
subtracting one large quantity from
another, which can wipe out all the
significant digits in the small differ-

ence. Textbooks on numerical analysis
are heavy with advice on how to guard
against such events; mostly it comes
down to “Don’t do that.”

The second problem is overflow,
when a number goes off the scale. The
IEEE standard allows two responses to
this situation. The computer can halt
the computation and report an error,
or it can substitute a special marker,
“∞,” for the oversize number. The lat-
ter option is designed to mimic the
properties of mathematical infinities;
for example, ∞+1 = ∞. Because of this
behavior, floating-point infinity is a
black hole: Once you get into it, there is
no way out, and all information about
where you came from is annihilated.

The third hazard is underflow,
where a number too small to represent
collapses to zero. In real arithmetic, a
sequence like 1⁄2, 1⁄4, 1⁄8,… can go on in-
definitely, but in a finite floating-point
system there must be a smallest nonze-
ro number. On the surface, underflow
looks much less serious than overflow.
After all, if a number is so small that
the computer can’t distinguish it from
zero, what’s the harm of making it ex-
actly zero? But this reasoning is mis-
leading. In the exponential space of
floating-point numbers, the distance
from, say, 2–127 to zero is exactly the
same as the distance from 2127 to infin-
ity. As a practical matter, underflow is
a frequent cause of failure in numerical
computations.

Problems of rounding, overflow and
underflow cannot be entirely avoided
in any finite number system. They can
be ameliorated, however, by adopting
a format with higher precision and a
wider range—by throwing more bits
at the problem. This is one approach
taken in a recent revision of the IEEE
standard, approved in June 2008. It
includes a new 128-bit floating-point
format, supporting numbers as large
as 216,383 (or about 104,932).

Tapering Off, or Rolling Off a Log
By now, IEEE floating-point methods
are so firmly established that they of-
ten seem like the only way to do arith-
metic with a computer. But many al-
ternatives have been discussed over
the years. Here I shall describe two
of them briefly and take a somewhat
closer look at a third idea.

The first family of proposals might
be viewed more as an enhancement of
floating point than as a replacement.
The idea is to make the trade-off be-

fixed-point numbers

floating-point numbers

logarithmic numbers

level-index numbers

0 8 16 24 32 40 48 56 64

“Spectra” of computer number systems show how numbers are distributed along the real num-
ber line. Fixed-point numbers are placed at uniform intervals; for floating-point numbers the
density falls by half with each higher power of 2; logarithmic numbers have a smoothly declin-
ing density; so do level-index numbers, but the gradient in density is even more extreme. The
spectra are based on toy versions of the number systems, with just a few bits of precision.

2009 September–October 367www.americanscientist.org © 2009 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

tween precision and range an adjust-
able parameter. If a calculation does
not require very large or very small
numbers, then it can give more bits to
the significand. Other programs might
want to sacrifice precision in order to
gain wider scope for the exponent. To
make such flexibility possible, it’s nec-
essary to set aside a few bits to keep
track of how the other bits are allocated.
(Of course those bookkeeping bits are
thereby made unavailable for either the
exponent or the significand.)

A scheme of this kind, called tapered
floating point, was proposed as early as
1971 by Robert Morris, who was then
at Bell Laboratories. A decade later,
more elaborate plans were published
by Shouichi Matsui and Masao Iri of
the University of Tokyo and by Hozumi
Hamada of Hitachi, Ltd. More recently,
Alan Feldstein of Arizona State Uni-
versity and Peter R. Turner of Clarkson
University have described a tapered
scheme that works exactly like a con-
ventional floating-point system except
when overflow or underflow threaten.

The second alternative would re-
place numbers by their logarithms. For
example, in a decimal version of the
plan the number 751 would be stored
as 2.87564, since 102.87564 = 751. This
plan is not as radical a departure as it
might seem, because floating-point is
already a semi-logarithmic notation:
The exponent of a floating-point num-
ber is the integer part of a logarithm.
Thus the two formats record essen-
tially the same information.

If the systems are so similar, what’s
gained by the logarithmic alternative?
The motive is the same as that for devel-
oping logarithms in the first place: They
facilitate multiplication and division,
reducing those operations to addition
and subtraction. For positive numbers
a and b, log(ab) = log(a)+log(b). In gen-
eral, multiplying takes more work than
adding, so this substitution is a net gain.
But there’s another side to the coin: Al-
though logarithms make multiplying
easy, they make adding hard. Comput-
ing a+b when you have only log(a) and
log(b) is not straightforward. For this
reason logarithmic arithmetic is attrac-
tive mainly in specialized areas such as
image processing where multiplications
tend to outnumber additions.

On the Level
The third scheme I want to mention
here addresses the problem of over-
flow. If you are trying to maximize the

range of a number system, an idea that
pops up quite naturally is to replace
mere exponents with towers of expo-
nents. If 2N can’t produce a number
large enough for your needs, then try

22N or 222N

 or 2222N

.

(Whatever the mathematical merits of
such expressions, they are a typograph-
ical nightmare, and so from here on I
shall replace them with a more conve-
nient notation, invented by Donald E.
Knuth of Stanford University: 2↑2↑2↑2↑
N is equivalent to the last of the three
towers shown above. It is to be evalu-
ated from right to left, just as the tower
is evaluated from top to bottom.)

Number systems based on iterated
exponentiation have been proposed
several times; for example, they are
mentioned by Matsui and Iri and by
Hamada. But one particular version of
the idea, called the level-index system,
has been worked out with such care
and thoughtful analysis that it deserves
closer attention. Level-index arithme-
tic is a lost gem of computer science. It
may never make it into the CPU of your
laptop, but it shouldn’t be forgotten.

The scheme was devised by Charles
W. Clenshaw and Frank W. J. Olver,
who first worked together (along with
Alan Turing) in the 1940s at the Na-
tional Physical Laboratory in Britain.

They proposed the level-index idea in
the 1980s, writing a series of papers
on the subject with several other col-
leagues, notably Turner and Daniel W.
Lozier, now of the National Institute
of Standards and Technology (NIST).
Clenshaw died in 2004; Olver is now at
the University of Maryland and NIST,
and is co-editing with Lozier a new
version of the Handbook of Mathematical
Functions by Abramowitz and Stegun.

Iterated exponentials can be built on
any numeric base; most proposals have
focused on base 2 or base 10. Clenshaw
and Olver argue that the best base is e,
the irrational number usually described
as the base of the natural logarithms or
as the limiting value of the compound-
interest formula (1+1⁄n)n; numerically e
is about 2.71828. Building numbers on
an irrational base is an idea that takes
some getting used to. For one thing,
it means that almost all numbers that
have an exact representation are irra-
tional; the only exceptions are 0 and 1.
But there’s no theoretical difficulty in
constructing such numbers, and there’s
a good reason for choosing base e.

In the level-index system a number
is represented by an expression of the
form e↑e↑ … ↑e↑m, where the m at the
end of the chain is a fractional quantity
analogous to the mantissa of a loga-
rithm. The number of up-arrows—or

floating-point

level-index

logarithmic

fixed-point

0 8 16 24 32 40 48 56 64
number index

0

8

16

24

32

40

48

56

64

nu
m

be
r

va
lu

e

Another visualization of number-system spectra shows how the magnitude of a number increases
as a function of the number’s position in the counting sequence. For the uniformly spaced fixed-
point numbers, the function is a straight line, but the other systems produce concave-upward
curves (or, in the case of floating point, a jointed sequence of straight segments). The level-index
system has the highest density of small numbers, then the steepest rate of growth for larger ones.

368 American Scientist, Volume 97 © 2009 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

in other words the height of the expo-
nential tower—depends on the magni-
tude of the number being represented.

To convert a positive number to level-
index form, we first take the logarithm
of the number, then the logarithm of the
logarithm, and so on, continuing until
the result lies in the interval between
0 and 1. Counting the successive loga-
rithm operations gives us the level part
of the representation; the remaining
fraction becomes the index, the value of
m in the expression above. The process
is defined by the function f(x):

if 0 ≤ x < 1 then f(x) = x
else f(x) = 1+ f(ln(x)).

Here’s how the procedure applies to
the national-debt amount shown in the
photograph on page 365:

ln(10,659,204,157,341) = 29.9974449
ln(29.9974449) = 3.40111221
ln(3.40111221) = 1.22410249
ln(1.22410249) = 0.20220791

We’ve taken logarithms four times, so
the level is 4, and the fractional amount
remaining becomes the index. Thus the
level-index form of the national debt
is 4.20220791 (which seems a lot less
worrisome than $10,659,204,157,341).

The level-index system accommo-
dates very large numbers. Level 0 runs
from 0 to 1, then level 1 includes all
numbers up to e. Level 2 extends as far
as e↑e, or about 15.2. Beyond this point,
the growth rate gets steep. Level 3 goes
up to e↑e↑e, which is about 3,814,273.
Continuing the ascent through level 4,
we soon pass the largest 64-bit floating-
point number, which has a level-index
value of about 4.63. The upper bound-
ary of level 4 is a number with 1.6 mil-
lion decimal digits. Climbing higher still
puts us in the realm of numbers where
even a description of the size is hope-
lessly impractical. Just seven levels are
enough to represent all distinguishable
level-index numbers. Thus only three
bits need to be devoted to the level; the
rest can be used for the index.

What about the other end of the num-
ber scale—the very small numbers? The
level-index system is adequate for many
purposes in this region, but a variation
called symmetric level-index provides
additional precision close to zero. In
this scheme a number x between 0 and
1 is denoted by the level-index repre-
sentation of 1⁄x.

Apart from its wide range, the level-
index system has some other distinc-
tive properties. One is smoothness. For

floating-point numbers, a graph of the
magnitudes of successive numbers is
a jointed sequence of straight lines,
with an abrupt change of slope at each
power of 2. The corresponding graph
for the level-index system is a smooth
curve. For iterated exponentials this is
true only in base e, which is the reason
for choosing that base.

Olver also points out that level-index
arithmetic is a closed system, like arith-
metic with real numbers. How can that
be? Since level-index numbers are finite,
there must be a largest member of the
set, and so repeated additions or multi-
plications should eventually exceed that
bound. Although this reasoning is unas-
sailable, it turns out that the system does
not in fact overflow. Here’s what hap-
pens instead. Start with a number x, then
add or multiply to generate a new larger
x, which is rounded to the nearest level-
index number. As x grows very large,
the available level-index values become
sparse. At some point, the spacing be-
tween successive level-index values is
greater than the change in x caused by
addition or multiplication. Thereafter,
successive iterations of x round to the
same level-index value.

This is not a perfect model of un-
bounded arithmetic. In particular, the
process is not reversible: A long series
of x+1 operations followed by an equal
number of x–1s will not bring you back
to where you started, as it would on the
real number line. Still, the boundary at
the end of the number line seems about
as natural as it can be in a finite system.

Shaping a Number System
Is there any genuine need for an arith-
metic that can reach beyond the limits
of IEEE floating point? I have to admit
that I seldom write a program whose
output is a number greater than 1038.
But that’s not the end of the story.

A program with inputs and outputs
of only modest size may nonetheless
generate awkwardly large intermedi-
ate values. Suppose you want to know
the probability of observing exactly
1,000 heads in 2,000 tosses of a fair coin.
The standard formula calls for evalu-
ating the factorial of 2,000, which is
1×2×3×…×2,000 and is sure to over-
flow. You also need to calculate (½)2,000,
which could underflow. Although the
computation can be successfully com-
pleted with floating-point numbers—
the answer is about 0.018—it requires
careful attention to cancellations and re-
orderings of the operations. A number

system with a wider range would allow
a simpler and more robust approach.

In 1993 Lozier described a more sub-
stantial example of a program sensi-
tive to numerical range. A simulation
in fluid dynamics failed because of se-
vere floating-point underflow; redoing
the computation with the symmetric
version of level-index arithmetic pro-
duced correct output.

Persuading the world to adopt a
new kind of arithmetic is a quixotic un-
dertaking, like trying to reform the cal-
endar or replace the qwerty keyboard.
But even setting aside all the obstacles
of history and habit, I’m not sure how
best to evaluate the alternatives in this
case. The main conceptual question
is this: Since we don’t have enough
numbers to cover the entire number
line, what is the best distribution of
the numbers we do have? Fixed-point
systems sprinkle them uniformly. Float-
ing-point numbers are densely packed
near the origin and grow farther apart
out in the numerical hinterland. In the
level-index system, the core density is
even greater, and it drops off even more
steeply, allowing the numbers to reach
the remotest outposts.

Which of these distributions should
we prefer? Perhaps the answer will de-
pend on what numbers we need to rep-
resent—and thus on how quickly the
national debt continues to grow.

Bibliography
Clenshaw, C. W., and F. W. J. Olver. 1984. Be-

yond floating point. Journal of the Association
for Computing Machinery 31:319–328.

Clenshaw, C. W., F. W. J. Olver and P. R. Turner.
1989. Level-index arithmetic: An introduc-
tory survey. In Numerical Analysis and Paral-
lel Processing: Lectures Given at the Lancaster
Numerical Analysis Summer School, 1987, pp.
95–168. Berlin: Springer-Verlag.

Hamada, Hozumi. 1987. A new real number
representation and its operation. In Proceed-
ings of the Eighth Symposium on Computer
Arithmetic, pp. 153–157. Washington, D.C.:
IEEE Computer Society Press.

Lozier, D. W., and F. W. J. Olver. 1990. Closure
and precision in level-index arithmetic. SIAM
Journal on Numerical Analysis 27:1295–1304.

Lozier, Daniel W. 1993. An underflow-induced
graphics failure solved by SLI arithmetic.
In Proceedings of the 11th Symposium on Com-
puter Arithmetic, pp. 10–17. Los Alamitos,
Calif.: IEEE Computer Society Press.

Matsui, Shourichi, and Masao Iri. 1981. An
overflow/underflow-free floating-point
representation of numbers. Journal of Infor-
mation Processing 4:123–133.

Turner, Peter R. 1991. Implementation and
analysis of extended SLI operations. In Pro-
ceedings of the 10th Symposium on Computer
Arithmetic, pp. 118–126. Los Alamitos, Ca-
lif.: IEEE Computer Society Press.

