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Wagering with Zeno

Brian Hayes

Vacationing in italy, you 
wander into the coastal village 

of Velia, a few hours south of Naples. 
On the edge of town you notice an ar-
chaeological dig. When you go to have 
a look at the ruins, you learn that the 
place now called Velia was once the 
Greek settlement of Elea, home to the 
philosopher Parmenides and his dis-
ciple Zeno. You stroll through the ex-
cavated baths and trace the city walls, 
then climb a steep, cobbled roadway to 
an arch called the Porta Rosa. Perhaps 
Zeno formulated his famous para-
doxes while pacing these same stones 
900,000 days ago. Was there something 
special about the terrain that led him 
to imagine arrows frozen in flight and 
runners who go halfway, then half the 
remaining half, but never get to the 
finish line?

That night, Zeno visits you in a 
dream. He brings along a sack of an-
cient coins, which come in denomi-
nations of 1, 1⁄2, 1⁄4, 1⁄8, 1⁄16, and so on. 
Evidently the Eleatic currency had no 
smallest unit: For every coin of value 
1/2n, there is another of value 1/2n+1. 
 Zeno’s bag holds exactly one coin of 
each denomination.

He teaches you a gambling game. 
First the coin of value 1 is set aside; it 
belongs to neither of you but will be 
flipped to decide the outcome of each 
round of play. Now the remaining coins 
are divided in such a way that each of 
you has a total initial stake of exactly 
1⁄2. The distinctively Eleatic part of the 
game is the rule for setting the amount 
of the wager. Before each coin toss, 
you and Zeno each count your current 

holdings, and the bet is one-half of the 
lesser of these two amounts. Thus the 
first wager is 1⁄4. Suppose you win that 
toss. After the bet is paid, you have 3⁄4, 
and Zeno’s fortune is reduced to 1⁄4; the 
amount of the next bet is therefore 1⁄8. 
Say Zeno wins this time; then the score 
stands at 5⁄8 for you and 3⁄8 for him, and 
the next amount at stake is 3⁄16. If Zeno 
wins again, he takes the lead, 9⁄16 to 7⁄16.

In the morning you wake up won-
dering about this curious game. What 
is the likely outcome if you continue 
playing indefinitely? Is one player sure 
to win eventually, or could the lead be 
traded back and forth forever?

Can’t Win, Can’t Lose, Can’t Tie
I briefly discussed a version of the 
Zeno gambling process in an earlier 
column (“Follow the Money,” Septem-
ber–October 2002). Since then I have 
continued to explore the game, trying 
to understand its long-term behavior 
and relate it to other models in proba-
bility theory. I’ve had only partial suc-
cess, and so what follows is a progress 
report, presented in the hope that oth-
ers will build on it.

A few properties of the Zeno game 
are easy to state. For example, the bet-
ting process appears to be fair (assum-
ing that the coin being flipped is un-
biased). Each player has the same odds 
of winning or losing each round, and 
the amount at risk is the same. 

Another way of saying that the game 
is fair is that the expectation value for 
each player is 1⁄2. If you play many in-

dependent games, you should come 
out roughly even in the end. But an ex-
pectation value of 1⁄2 does not mean you 
should expect to go home with half the 
money at the end of a single game. In-
deed, after the first coin toss, the game 
cannot possibly end in a tie.

But you can never go broke, either—
at least not in a finite number of plays. 
However small your remaining wealth, 
the wagering rule says you can’t risk 
more than half of it. Of course the same 
reasoning protects your opponent as 
well: If you can’t lose everything, nei-
ther can you win it all.

Here’s another observation: In the 
game-within-a-dream described above, 
all of the numbers mentioned have a 
distinctive appearance. They are frac-
tions whose denominator is a power of 
2. In other words, they are numbers of 
the form m/2n, called dyadic rationals. 
Is this predilection for halves, fourths, 
eighths, sixteenths, etc., a peculiarity of 
that one example, or does the pattern 
carry over to all Zeno games?

The answer comes from an induc-
tive argument. Suppose at some stage 
of the game your score is a dyadic ra-
tional, x, and is less than or equal to 1⁄2. 
Then the amount at stake in the next 
round of wagering is x⁄2, so that your 
new tally will be either x–x⁄2 or x+x⁄2. 
But x–x⁄2 is simply x⁄2, and x+x⁄2 is 3x⁄2; 
both of these numbers are dyadic ratio-
nals. A similar (but messier) argument 
establishes the same result for values 
of x greater than 1⁄2. Thus if your score 
is ever a dyadic rational, it will remain 
one for the rest of the game. But the 
starting value, 1⁄2, is itself a dyadic ra-
tional, and so the only numbers that 
can ever arise in the game are fractions 
of the form m/2n.

This line of argument actually yields 
a slightly stronger result. For a score 
x< 1⁄2, the net effect of the gambling 
transaction is to multiply x by either 1⁄2 
or 3⁄2. In either case, the denominator is 
doubled; as the game proceeds, the de-
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nominator increases monotonically. An 
important consequence is that the en-
tire numerical process is nonrecurrent: 
In the course of a game you’ll never 
see the same number twice. This is one 
reason the game can’t end in a tie: Af-
ter the first flip of the coin, the score 
can never find its way back to 1⁄2.

Walking with Zeno
The evolution of a Zeno wagering 
game corresponds to a special kind 
of random walk. A player’s gains and 
losses are represented by the move-
ment of a walker along the interval 
between 0 and 1. The walker starts at 
the position x=1⁄2. Each flip of the coin 
determines whether the next step is to 
the left (toward 0) or the right (toward 
1). The length of the step is half the 
distance to whichever of these bound-
aries is nearer. In other words, the step 
length is 1⁄2 min(x, 1–x).

The upper illustration on page 196 
shows a few trajectories constructed 
according to these rules. One feature of 
note is an apparent tendency for paths 

to flee the middle of the interval and 
linger near the edges. It’s not hard to 
understand this behavior, at least in a 
qualitative way. Whenever the walker 
is near the center, it is moving with 
higher velocity (that is, taking larger 
steps per unit time), and so it doesn’t 
stay long in this neighborhood. Out at 
the periphery, the walker moves very 
slowly, and so it takes a long time to 
escape. It’s as if the walker were mov-
ing over a landscape that’s smoothly 
paved in the middle but becomes a 
sticky mire near the edges.

A plausible hypothesis suggests that 
a typical random walk will spend more 
and more time near the end points of 
the interval as the walk proceeds, com-
ing arbitrarily close to 0 and 1. To test 
this idea you might follow a walk for 
many thousands of steps, but that pro-
cess is computationally challenging. 
If you represent the walker’s position 
by means of a floating-point number, 
the program will usually report that 
the walker has reached either 0.0 or 
1.0 after just a few hundred steps. This 

outcome would surprise Zeno! The 
problem is that floating-point formats 
have only finite precision, and very 
small values are rounded to zero.

A remedy for the round-off prob-
lem is exact rational arithmetic, but 
this becomes cumbersome. Here is the 
unwieldy numerical value of a game 
score after 150 steps:

2854495385411827052653424041061904510840082661
2854495385411919762116571938898990272765493248

The numerator and denominator both 
have 45 digits, and they differ by less 
than one part in a trillion.

Zeno’s Favorite Numbers
An alternative to tracing a few very 
long games is to gather statistics on 
the outcome of many shorter games. 
The lower illustration on page 196 
gives the observed frequencies of vari-
ous outcomes for games of length one 
through six, based on samples of sev-
eral thousand trials.

Games of length one (a single coin 
toss) can have only two possible out-

A stone gate called the Porta Rosa once connected two quarters of the ancient city of Elea, near what is now the town of Velia in southern Italy. 
Elea was the home of Zeno, the philosopher famous for his paradoxes of multitude and motion. The seemingly redundant “eyebrow” directly 
above the main arch of the Porta Rosa may have had a structural role, relieving stresses in the stonework. But followers of Zeno’s thinking 
could tell a different story. If Zeno had designed the gate, he would have placed the primary arch halfway between the ground and the top of 
the wall, then a second arch halfway between the first arch and the top, a third arch halfway again, and so on. Perhaps the repairs near the top 
of the wall testify to the impracticality of this scheme? (Photograph by the author.)
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comes, namely 1⁄4 and 3⁄4, and these 
events are equally likely. Two-round 
games must end with a value of 1⁄8, 3⁄8, 
5⁄8 or 7⁄8, and again all four choices have 
the same probability. 

Things get interesting with games of 
three or more rounds. After the third 
coin toss, the score of the gambler (or 
the position of the random walker) 
must be a fraction that, when expressed 
in lowest terms, has a denominator of 
16. There are eight such fractions, but 
only six of them ever turn up as results 
of Zeno games; 5⁄16 and 11⁄16 are simply 
not observed. Among the six values 
that do occur, two of them (3⁄16 and 13⁄16) 
are twice as common as the others.

Going on to four-round games, the 
pattern gets more peculiar. In this case 
all game values must be fractions with 
a denominator of 32. Of the 16 possi-
bilities, only 10 are actually observed, 
and a few of these are two or three 
times more frequent than others. The 
likeliest game outcomes are 3⁄32 and 9⁄32 
(along with the symmetrically related 
values 29⁄32 and 23⁄32, which are equal 
to 1–3⁄32 and 1–9⁄32). The differences in 
frequency are much too large to be an 
effect of statistical noise.

As the number of wagering rounds 
increases further, the patterns become 
even more pronounced. Wide gaps 
in the frequency distribution turn the 
graph into a snaggle-tooth smile. And 
certain numbers are dramatically more 
popular than the rest. For games of 
length six, only 24 of 64 possible out-
comes are observed, and much of the 
probability is concentrated in just three 
values (and their symmetrical counter-
parts). The three favored fractions are 
9⁄128, 27⁄128 and 3⁄128. Why does the Zeno 
process favor these particular num-
bers? The powers of 2 in the denomi-
nator have already been explained, 
but why do the most common game 
outcomes all have powers of 3 in the 
numerator? It can’t be an accident.

Climbing Zeno’s Tree
In an effort to puzzle out these pat-
terns, I tried constructing the tree of all 
possible outcomes for games of a given 
depth. In other words, I listed the two 
available moves from the starting state 
x=1⁄2, then for each of these positions 
I wrote down the two possible out-
comes of another coin flip, and so on. 
(Eventually I wrote a program to do 
the calculations and draw the tree.)

Before plunging into the intricacies 
of the Zeno tree, it’s worth pausing to 

The statistics of the Zeno game show that not all outcomes are equally likely, except in the 
very shortest games. The charts record the observed frequency of all possible end states for 
games that last from one round (that is, a single coin toss) to six rounds. The only numbers 
that can appear in the game are dyadic rationals—fractions of the form m/2n—but only a sub-
set of these numbers are actually observed. Among the numbers present, some are much more 
popular than others; especially common are those with a power of 3 in the numerator.

In Zeno’s wagering game, two players start with a stake of 1⁄2 each and decide a series of bets by 
flipping a fair coin. The size of each bet is half the current wealth of the poorer player. The game 
is equivalent to a random walk on the interval from 0 to 1, taking steps whose size is equal to 
half the distance to the nearer boundary. The trajectories of four such walks are shown here.
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look at a simpler model—a random 
walk in which the step size is halved 
with every step. Starting at x=1⁄2, the 
walker goes either left or right a dis-
tance of 1⁄4, then 1⁄8, then 1⁄16, etc. Tabu-
lating all possible walks of this kind 
yields a binary tree that fans out to 
reach all the dyadic rationals. The 
branches bifurcate symmetrically, and 
each branch is completely isolated 
from all the others. The descendants 
of two neighboring nodes will come 
arbitrarily close but never touch. In 
a wagering game based on this rule, 
winning the first round is enough to 
put you in the lead forever. Even if you 
lose every subsequent bet, your share 
of the wealth can never fall below 1⁄2.

The Zeno game tree starts out exactly 
like this tidy binary tree—the first three 
levels are identical—but then things 
start to get weird. In the lower levels 
of the tree there’s a lot of disorder, with 
various gaps between adjacent nodes, 
and many crossing branches. Even 
more remarkable, many paths through 
the tree bifurcate and then immediately 
come together again. (Strictly speaking, 
a structure with loops of this kind isn’t 
a tree at all, but it will do no harm to 
continue using the term.)

We can understand a lot of what’s 
going on in the Zeno tree by looking at 
two specific fragments. First is the loop 
formed below the node at 1⁄4. One path 
descending from this node goes left to 
1⁄8 and then right to 3⁄16; another path 
goes right to 3⁄8 and then left to meet 
up at 3⁄16. The fact that these two routes 
converge on precisely the same point 
is not some miraculous numerical co-
incidence; it’s just a matter of working 
out the arithmetic:

When the dust settles, this identity 
comes down to the proposition that a 
half of three halves is three quarters, 
and likewise three halves of a half is 
three quarters.

The second interesting spot in the 
tree is right next door—the pair of 
paths descending from the node at 
3⁄8. The branch to the left, as we’ve al-
ready seen, goes to 3⁄16, and then the 
next turn right on this path lands at 9⁄32. 
The alternative route heads right from 
3⁄8 to 9⁄16; however, on the next leftward 
bend this path fails to rejoin its partner 
at 9⁄32. Instead the branch stops short at 
11⁄32. The reason is that this path crosses 

the midline of the tree at x=1⁄2, and for 
points to the right of this line distance 
is measured not from 0 but from 1. The 
two branches fail to meet because the 
equation no longer holds:

This mechanism effectively divides 
the tree into three vertical zones. For all 
points to the left of 1⁄3 and to the right 
of 2⁄3, a node’s two children are both on 
the same side of the midline and thus 
are governed by the same rule for cal-

culating step lengths. As a result, these 
zones form a fairly regular latticelike 
structure, made up of diamond-shaped 
panes that grow narrower toward the 
periphery. In the middle zone, by con-
trast, all nodes have one child on each 
side of the midline, where different 
rules apply. The result is chaos.

The structure of this tree begins to 
illuminate some of the observations 
made about the statistical distribu-
tion of Zeno-game outcomes. For ex-
ample, a simple counting argument 
explains the existence of gaps in the 
distribution. Every node of a binary 

A symmetrical binary tree represents all possible trajectories of a game similar to but simpler 
than the Zeno game. In this variant, the size of the wager—or the length of a step in a random 
walk—is cut in half after every round. All the dyadic rationals are present in the tree, and at each 
level they all have the same probability. Paths within the tree never cross or touch. The structure 
is called a binary tree because each node has two children; each child has just one parent node.

All possible trajectories of the Zeno game form a binary tree, but the structure is chaotic. 
Many branches cross, and there are also mergers, where a single node is a child of two sibling 
parents. Because of such rejoinings, many nodes can be reached by more than one path from 
the tree’s root. The probability that a game will end at a particular node is proportional to the 
number of pathways reaching it, indicated here by the size of the dots marking the nodes.
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tree has two descending links, which 
is just enough to reach all the dyadic 
rationals, whose population doubles 
at each level of the tree. But when links 
from two or more nodes converge on 
the same child node, then other nodes 
must be missing from the tree. (If I 
have two children and my spouse has 
two children, that doesn’t necessarily 
mean we have four children.)

Counting can also explain why some 
game endings are more common than 
others—such as why 3⁄16 turns up twice 
as often as 1⁄16. Think of playing a Zeno 
game as tracing a pathway through the 
tree, starting at the root (level 0) and 
continuing down to some final node. 
At each interior node, the path turns 
left or right with equal probability. In 
the simple binary tree, this procedure 
yields the same probability for all the 
nodes at a given level. In particular, at 
the third level each of the eight nodes 
is reached with probability 1⁄8. In the 
Zeno tree, however, two different paths 
both lead to the third-level node at 3⁄16. 
Since there are two ways of getting to 
this node, the probability of landing 
there is doubled.

The path-counting analysis can be 
understood more clearly if we suppress 
some of the clutter and disorder in the 
Zeno tree. Suppose a random walk al-
ways takes steps of size x⁄2, adopting 
the rule that governs the left half of the 
Zeno tree but applying it everywhere. 
The corresponding tree has a uniform 
lattice structure in which it’s easy to 

count paths (see illustration above). Ev-
ery interior node has two parents, and 
the number of ways of reaching the 
node is simply the sum of the number 
of ways of reaching the parents. Hence 
the path counts correspond to the en-
tries in Pascal’s triangle.

There’s something else notable about 
this tidied-up version of the Zeno tree: 
All the numbers that appear in the lat-
tice take a very specific form: 3m/2n. 
Thus the numerators are drawn from 
the series 1, 3, 9, 27, 81,..., and the de-
nominators follow the now-familiar 
progression 2, 4, 8, 16, 32.... These are 
the very numbers that appear with 
higher-than-average frequency in the 
Zeno game, and it’s clear why. The 
highest path counts run down the mid-
dle of the lattice, supporting the obser-
vation that numbers such as 3⁄32, 9⁄64 and 
27⁄256 are extraordinarily popular.

Of course the real Zeno tree is not so 
tidy; the lattice is torn apart between 
any two nodes on opposite sides of 
the midline. As a result of these trans-
 midline events, factors other than 3 
can enter the numerator; they form 
shadow lattices of their own, visible in 
some parts of the tree. Thus the prob-
abilities calculated from the simple lat-
tice are at best approximations.

Midline Crises
Those are all the answers I can offer on 
the Zeno wagering game, but I certain-
ly haven’t run out of questions. Here 
are three more.

First, how dense is the set of num-
bers included in the Zeno tree, mea-
sured as a proportion of all the num-
bers that might be present? At level 
n there are 2n dyadic rationals in all; 
what fraction of them are Zeno-tree 
numbers, and how does that fraction 
evolve as n increases? At the first three 
levels of the tree the fraction is 1: All 
the dyadic rationals are included. Then 
there is a steep linear descent as the 
fraction goes from 3⁄4 to 5⁄8 to 1⁄2 to 3⁄8. 
This series obviously cannot continue 
or the tree will disappear in three more 
steps. And indeed the slope begins to 
flatten out: The next four elements of 
the series are 9⁄32, 25⁄128, 19⁄128 and 7⁄64. At 
this point each level of the tree includes 
only about a tenth of the dyadic ratio-
nals at that level. It seems a reasonable 
guess that the density will approach 
zero as n tends to infinity.

Second, how much structure can we 
find in the Zeno tree? To make this 
question more concrete, suppose you 
want to determine which node, on a 
certain level of the tree, gives the clos-
est approximation to some specified 
value on the real number line. With the 
standard binary tree this is easy: You 
can list a series of left and right turns 
that describe a path from the root to 
the closest node. It’s not clear to me 
how to find such a path in the Zeno 
tree, except by exhaustive search.

Finally there’s this big question: If 
you allow a game to continue arbitrari-
ly long, will one player gain an advan-
tage and hold onto it indefinitely, or 
will the lead change hands repeatedly? 
In terms of the random walk, will the 
walker get stuck on one side, or will 
the walk cross back and forth over the 
midline? Of course it’s always possible 
for the walker to get back to midline; 
all it takes is a sufficiently long se-
quence of steps in the right direction. 
But it doesn’t necessarily follow that 
such an event will have a probability 
greater than zero when the number of 
steps grows without limit.

For what it’s worth, here’s what the 
experimental evidence suggests. In 
random walks of 10,000 steps, roughly 
half exhibit no midline crossings at all: 
The walker sets out either left or right 
initially and never gets back to the oth-
er side. For those walks that do cross 
the midline, the last observed crossing 
is usually within the first 10 steps; the 
latest I have seen is step 101. But tri-
als of 10,000 steps, or even 10 million, 
prove nothing.

A simplified and regularized version of the Zeno game tree shows how junction points affect 
the number of paths through the tree and hence the probability of reaching a node. The tree 
corresponds to a random walk in which the step length is always one-half of x. The number of 
paths reaching each node (indicated by arrow thicknesses and by numbers in black) creates the 
pattern known as Pascal’s triangle, with the likeliest nodes in the middle. The path counts in the 
real Zeno tree are different because the grayed nodes at the right are not present in that tree.
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In Search of Zeno’s Urn
It’s entirely possible that these ques-
tions have already been answered 
somewhere in the literature on prob-
ability models. Knowledgeable friends 
have pointed me to two areas in par-
ticular: urn models and reinforced ran-
dom walks. I have not yet found any 
discussion of a model that I can recog-
nize as being isomorphic to the Zeno 
game, but I’ve found some fascinating 
reading along the way.

Urn models are the 18th-century 
ancestor of the Powerball lottery: You 
mix up a bunch of balls in a contain-
er and draw them out one by one. Of 
particular relevance is a class of mod-
els studied by George Pólya, Bernard 
Friedman, David A. Freedman and a 
number of others, including recently 
Robin Pemantle. In one version, an 
urn initially holds one white ball and 
one black ball. Then each time a ball 
is drawn at random from the urn, that 
ball is put back in along with an ex-
tra ball of the same color. When the 
process is repeated many times, will 
the ratio of black to white balls settle 
down to some fixed value, or will it 
keep fluctuating? The answer is that 
in any single long run, the ratio will 
tend to a stable value, but the value 

itself is a random variable. If you try 
the experiment again, it will come out 
differently.

The reinforced random walk was 
invented by Persi Diaconis and has 
also been studied by Pemantle. The 
idea is to watch a random walker 
stepping from node to node through 
a network. Visiting a node increases 
the probability that the same node will 
be chosen the next time the walker is 
nearby. The question asked is whether 
the walker can range freely throughout 
the graph forever or will get trapped in 
some local neighborhood. The answer 
seems to depend on the details. On a 
one-dimensional lattice (like the line 
of integers), the walker gets stuck in a 
five-node region. But a variation that 
associates probabilities with the links 
between nodes rather than the nodes 
themselves allows the walker to es-
cape confinement and visit every node 
infinitely often. On two-dimensional 
infinite lattices the fate of the walker is 
unknown.

It is unclear to me whether the Zeno 
game belongs to the same family as 
these models. The Zeno mechanism 
includes no explicit reinforcement 
of probabilities; on the other hand, it 
does have an indirect form of positive 

feedback, because movement away 
from the center reduces the step size 
and thereby makes it harder to move 
back. Perhaps the Zeno process can 
be reformulated in a way that will 
make the correspondence with known 
work clearer. But the analysis of all 
such models is a subtle art. Every time 
I think I’m getting close to an answer, 
it seems the problem has moved on a 
little further down the road.
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