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Nearly all of us have been enchanted
at some time in our lives by the

fragile symmetry of soap bubbles and
soap films. But few have had the privi-
lege of being introduced to them by a
great scientist, as Agnes Gardner King
did. In the fall of 1887, the fledgling
painter paid a visit to her uncle, Lord
Kelvin (then Sir William Thomson), a
physicist who was already renowned
for his work in thermodynamics. A day
after arriving, she recorded that:

Uncle William and Aunt Fanny met
me at the door, Uncle William armed
with a vessel of soap and glycerine
prepared for blowing soap bubbles,
and a tray with a number of mathe-
matical figures made of wire. These
he dips into the soap mixture and a
film forms and adheres to the wires
very beautifully and perfectly regu-
larly. With some scientific end in
view he is studying these films.

Kelvin was drawn to soap films in
the course of his efforts to understand
the nature of light. By the late 19th cen-
tury, a multitude of experiments had
shown that light exhibits wavelike
properties, and many scientists sought
to explain light by describing some sort
of medium, called the “ether,” through
which light waves would propagate.
Kelvin conceived of a foamlike model
for the ether, so he attacked the prob-
lem of understanding what would be
the structure of the most perfect possi-

ble foam, one in which all the bubbles
have the same volume. Kelvin realized
that this question could be boiled down
to the following purely mathematical
problem: What is the best way to divide
three-dimensional space into cells of
equal volume, if one wants to minimize
the surface area of the cell walls?

Over the course of two months,
Kelvin searched for the shape that
would form the best partition. By No-
vember 4, 1887, he had found what he
believed to be the answer, a polyhedron
to which he gave the tongue-twisting
name of “tetrakaidecahedron” (mean-
ing 14-sided polyhedron) but which is
more commonly known as the truncat-
ed octahedron. Copies of this shape,
placed next to each other, fill all of
space, with a lower surface area than
more familiar partitions, such as a par-
tition into cubical “rooms.” Kelvin’s
partition is highly symmetrical, like the
cubical partition, and has a strong aes-
thetic appeal.

Although Kelvin did not prove that
the truncated octahedron was the best
possible division of space, for more than
a century his solution was generally ac-
cepted as correct. It received the stamp
of approval from such illustrious math-
ematicians as Hermann Weyl, who
wrote of it in 1952 in his famous book,
Symmetry. But in 1994, physicists Denis
Weaire of Trinity College Dublin and
Robert Phelan, now at the Shell Re-
search and Technology Center in Ams-
terdam, astonished mathematicians and
physicists by producing a partition of
space with lower surface area. Weaire
and Phelan’s partition, like Kelvin’s,
was inspired by naturally occurring
structures, this time from chemistry.

One of the reasons that scientists ex-
pected Kelvin’s solution to hold up was
that his partition is one of the most ap-
pealing, most symmetrical divisions of
space. It is an intriguing phenomenon

in the sciences that aesthetically pleas-
ing solutions seem to have a higher
chance of being correct than more com-
plicated, less symmetric ones (a topic
elaborated in these pages by James W.
McAllister in March–April 1998). As
Oxford University mathematician and
physicist Roger Penrose put it, 

I have noticed on many occasions in
my own work where there might,
for example, be two guesses that
could be made as to the solution of a
problem and in the first case I would
think how nice it would be if it were
true; whereas in the second case I
would not care very much about the
result even if it were true. So often,
in fact, it turns out that the more at-
tractive possibility is the true one—
or that while thinking about the
problem in this way the true solu-
tion would finally emerge to reveal
itself as even more attractive than ei-
ther contemplated earlier.

Weaire and Phelan’s structure, which
is less symmetrical than Kelvin’s, is a re-
minder that our inclination toward beau-
tiful solutions must always be examined
critically—especially when nature itself
provides an alternative. On the other
hand, in the past two years Thomas
Hales, a colleague of mine at the Univer-
sity of Michigan, has struck a blow for
symmetry in two other problems relat-
ed to foams: the Kepler conjecture, which
states that the way to pack equal-volume
balls together with the least wasted space
is the familiar pyramid packing used to
stack fruit in groceries (discussed in Sci-
ence Observer, November–December
1998); and the honeycomb problem, a
two-dimensional version of the Kelvin
question. The study of foams, then,
seems to be a subject poised very deli-
cately between complexity and symme-
try, and one in which the final word has
not yet been said.
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Films and Foams
Kelvin opened his article on partition-
ing space with the words, “this prob-
lem is solved in foam.”  It may not be
obvious that mathematics applies to
foams, but indeed physics and mathe-
matics are intimately intertwined in
soap films.

The force that enables soap bubbles
to exist is known as surface tension
and is caused by the attraction between
the molecules of a soap film. Since the
molecules tend to pull together, main-
taining a large surface area is energy-
expensive; the soap film naturally de-
forms toward the surface of least area
and lowest energy.

Consider what happens when you
dip a circular wire into a soapy liquid.
When you draw it out, you see a beau-
tiful iridescent soap film shaped like a
flat disk. In this simple case, it is possi-
ble to confirm mathematically that the
flat disk is the lowest-area surface that
the wire can support. What if I dip a
more complicated wire loop into the
soap solution? The surface that forms
when I draw out the wire is no longer
as familiar, but there are still some
things that mathematicians can say

Figure 1. Computer rendition of a soap
foam, filling up all of space with equal-
sized bubbles, suggests the symmetry and
infinite complexity of mathematical foams.
In the last decade, mathematicians have
solved problems concerning both “dry”
foams with infinitely thin cell walls—such
as the idealized soap foam pictured here—
and “wet” foams, in which walls can be
thicker in places. However, one of the most
fundamental questions about dry foams,
called the Kelvin problem, remains unre-
solved: What is the way to partition all of
space into equal-sized bubbles, using the
smallest amount of surface area? In this
image, John M. Sullivan of the University of
Illinois simulates a dry foam representing a
new candidate solution to this problem, the
Weaire-Phelan foam.
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about it. When a wire loop supports a
soap film, the air pressures on both
sides of the film are equal. Setting aside
gravity, which is much weaker than
surface tension for a small soap film,

the only forces that can disturb the bal-
ance of the film are the attractive forces
of the film’s own molecules.

Therefore, in order for the soap film
to be in equilibrium, the attractive

forces that the molecules exert on one
another must exactly cancel one anoth-
er. This happens, for example, at the
central point (or “saddle point”) of a
saddle surface. On the saddle, many of
the molecules lie higher up than the
saddle point; these molecules exert an
upward pull on the saddle point. On
the other hand, just as many molecules
lie lower than the saddle point, so the
upward and downward forces balance
each other, leaving the saddle point in
equilibrium. When the attractive forces
cancel one another at every point, the
film is called a surface of zero mean cur-
vature. Such films are the only ones that
can form on a wire frame.

The most familiar soap film of all is,
of course, the round soap bubble. Un-
like the soap films that exist on wire
loops, the soap bubble does not have
zero mean curvature. If you look at a
molecule at the “north pole” of a bub-
ble, you see that all of the nearby mole-
cules are lower, so there is a net down-
ward force on that molecule, toward
the center of the bubble. Likewise, sur-
face tension causes an inward force at
every other point on the sphere. Math-
ematicians say that the sphere has posi-
tive mean curvature.
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Figure 2. After extensive experiments with
wire models such as the “Kelvin bedspring”
(photograph), Lord Kelvin arrived at a con-
jecture that lasted for more than a century.
He proposed that, in the ideal foam, the cells
or bubbles are shaped like a very gently
curved version of a truncated octahedron.
These cells do fit together to fill all of space,
as suggested in the computer drawing above.
Moreover, it is possible to force a small num-
ber of soap bubbles into this configuration
by dipping the “Kelvin bedspring” into a
soap solution. But Dublin physicists Denis
Weaire and Robert Phelan startled the math-
ematical world in 1994 by showing that
Kelvin’s foam uses more surface area per
bubble than an alternative, somewhat less
symmetrical arrangement. (Photograph by
Mike Jewkes, Hunterian Museum, Uni-
versity of Glasgow; illustration adapted from
Surface Evolver image generated by
Kenneth Brakke, Susquehanna University.)

p

Figure 3. Elementary physics and geometry constrain the shape of a soap film. In a soap film
that encloses no air, the net force on every point owing to surface tension is zero. At a typical
point the part of the film that lies above the point pulls upward, while the part of the film
that lies below pulls downward, as at the point p on the saddle surface (left). In order for
these forces (black and red arrows) to cancel, the upward curvature of the surface must bal-
ance the downward curvature at every point, giving rise to a surface with zero mean curva-
ture. At right, zero mean curvature does not apply to a soap bubble, because the inward force
resulting from surface tension (red arrows) is balanced instead by air pressure (black arrows).
However, an energy-minimizing description of the surface remains valid: The soap bubble
adopts the configuration with the least surface energy (and therefore least surface area) of
any surface enclosing the same volume of air. For a single soap bubble with no neighbors,
the area-minimizing configuration has been proved to be a sphere.



Why, then, don’t soap bubbles im-
plode? Since the bubbles have no wire
loops to support them, surface tension
seems to dictate that they should col-
lapse in on themselves. But we all have
seen spherical soap bubbles floating
freely through the air, oblivious to the
forces that seem to call for their de-
struction. The answer to this apparent
contradiction lies in the pressure dif-
ference inside and outside the bubble.
As a soap bubble starts to contract, the
air inside the bubble exerts a greater
pressure than the air on the outside, so
that the inside air pushes outward on
the soap bubble. The bubble finds its
equilibrium in the sphere whose in-
ward surface tension exactly balances
this outward push.

The mathematician Pappus of Alex-
andria wrote the first careful mathe-
matical analysis of the spherical shape
of soap bubbles in 320 A.D., although it
is likely that the ideas he described
originated as much as 500 years earlier
with the Greek mathematician Zen-
odorus. The first rigorous proof, using
calculus, that the sphere has the least
area of any figure containing a given
volume was not given until 1884 by the
German mathematician H. A. Schwarz.
A somewhat easier version of the prob-
lem, called the “isoperimetric prob-
lem,” is to show that a circle has the
least perimeter of any plane figure en-
closing a given area. This can be proved
without calculus, and indeed Pappus
gave such a proof.

Soap-bubble problems remain notori-
ously hard to solve mathematically.
Take, for example, the “double bubble”
theorem, which says that the best way to
enclose two equal volumes is within two
spherical pieces that meet along a com-
mon flat wall, forming a double bubble.
In spite of the fact that this seems like
the obvious choice, the double-bubble
problem is so hard that it only yielded
to rigorous mathematical proof as re-
cently as 1995, by the mathematicians
Joel Hass and Roger Schlafly of the
Davis and Santa Cruz campuses, re-
spectively, of the University of Califor-
nia. (See “Bubbles and Double Bub-
bles,” September–October 1996).

Wet Foams and Sphere Packings
The Kelvin problem is about dry foams,
foams in which there is so little liquid
that the walls may be regarded as hav-
ing negligible thickness. Recently, sig-
nificant progress has been made in un-
derstanding wet foams, in which there

is a substantial liquid content acting as
a cushion between the bubbles. How
will equal-volume bubbles arrange
themselves in a wet foam? This ques-
tion, a not-too-distant cousin of
Kelvin’s problem, leads to another cen-
turies-old problem that was solved by
Hales in August 1998.

When a foam has a high liquid con-
tent, the individual bubbles have much
more freedom of shape than in a dry
foam, because they do not directly
touch each other. If there is enough liq-
uid, each bubble will independently
minimize its surface area, taking (as
Schwarz proved) the shape of a sphere.
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Figure 4. Wet and dry foams differ in the amount of foam material between air bubbles. In a dry
foam (top), created by draining soap solution from a wet foam, the volume occupied by the
foam material is small; mathematicians model such a foam as if it were composed of infinitely
thin sheets of material forming polyhedra, and they measure the amount of material by area
rather than volume. In a wet foam (bottom), the foam material occupies a significant volume.
This allows each air bubble—except for a few of the larger ones in this picture—to minimize its
surface energy independently of its neighbors. Hence the bubbles in a wet foam are spherical.
Neither photograph shows a foam with equal-sized bubbles, as such foams are very difficult to
realize experimentally. (Photographs courtesy of Burkhard Prause, University of Notre Dame.)



So the question becomes, what is the
way to pack equal-volume spheres to-
gether with the least wasted space? At
the beginning of the 17th century the
great physicist Johannes Kepler pro-
posed an answer: The best way should
be the most natural one, namely, the
pyramid stacking. This hypothesis be-
came known as the Kepler conjecture,
and in spite of many efforts it resisted
proof until just a year and a half ago.

Hales’s approach to the Kepler con-
jecture can be understood by an analo-
gy with the two-dimensional version
of the problem. Instead of packing to-
gether spheres in space, suppose I try
to cover a flat surface with closely
packed circular objects, such as pen-
nies. Imagine trying to lay down the
pennies on an infinitely large table, in
such a way that they never overlap.
What is the way to do this with the
least wasted space? Since the table and
the collection of pennies are infinite,
strictly speaking I am trying to mini-
mize the amount of wasted space per
penny. One natural way to arrange
pennies is simply to line them up in
horizontal rows and then place the
rows next to each other so that the pen-
nies line up vertically as well as hori-
zontally; then the pennies lie inside
squares. Another way is to line the
pennies up in rows, but then place
each row into the indentations of the
row beneath it; now the pennies lie in-
side hexagons. Common sense tells me
that the hexagon arrangement wastes
less space than the square arrange-
ment. The hexagon pattern is, in fact,
the best possible packing of pennies;
this can be proved using elementary
mathematics. A key step is to cut a
penny pattern up into three different
types of small, easily-handled pieces
(see Figure 6), and then to compute the
percentage of wasted space on each of
these pieces. 

Carving space into small pieces is
also essential to Hales’s proof of the
three-dimensional Kepler conjecture,
since it transforms an infinite problem
into a finite, although huge, problem.
His decomposition produces about
5,000 different cases to consider. Hales
employed the calculating power of
computers to knock these cases down
one by one. His final proof, excluding
computer work, requires several hun-
dred pages. The monumental effort
that went into this proof stands in
sharp contrast to the simplicity of the
statement of the Kepler conjecture. It

156 American Scientist, Volume 88 © 2000 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

Figure 5. Three-dimensional foam problems can often be understood by considering their
two-dimensional analogues. For a wet foam, the problem of minimizing the amount of foam
material (or maximizing the amount of air) per unit volume reduces to a sphere-packing prob-
lem. The two-dimensional analogue of sphere-packing is circle-packing. At left, a square
arrangement of disks (here, pennies) fills only 78.5 percent of the plane, whereas a hexagonal
arrangement fills 90.7 percent. The hexagonal arrangement can be proved to be optimal.

Figure 6. Proof of the two-dimensional version of the wet-foam problem proceeds by dividing
the plane into pieces where the hexagonal arrangement can be proved to be the densest possi-
ble. Illustrated here are a hexagonal packing (left column) and a competitor. Circles (blue) are
drawn about each penny so that the penny occupies 75 percent of the area of the circle. Note
that in the hexagonal packing, the blue circles meet three at a time, leaving no gaps between
them. In the competitor packing, gaps remain between the circles. Finally, straight lines (green)
are drawn from the centers of the pennies to the intersection points of the blue circles. In the
hexagonal packing, this creates an arrangement of diamond-shaped “lozenges” (red) that fit
together snugly and fill up the plane, with each lozenge 90.7 percent covered by pennies. But
in the competitor packing (bottom right) there are “crevices” (yellow) between the lozenges
that are only 75 percent covered by a penny, along with the aforementioned “gaps” (black) that
are not covered at all by a penny. Because every piece of the plane—lozenge, crevice or gap—is
90.7 percent or less covered by the competitor packing, the competitor is therefore less dense
than the hexagonal packing.



hints at the challenges that may lie in
the way of answering the still more dif-
ficult Kelvin question, in which instead
of packing together identical spheres
we must consider infinitely many dif-
ferent possible cell shapes.

“A Most Severe Architecture”
What if I try moving down to two di-
mensions to consider the Kelvin prob-
lem? Now my cells will be two-dimen-
sional, and the walls between cells will
be lines (or maybe curves). Now, what
is the partition of the plane into equal-
area cells that minimizes the total
length of the walls? If I restrict my
attention to partitions in which all the
cells are identical regular polygons,
only three patterns or “tessellations”
emerge: tilings of the plane by squares,
by equilateral triangles and by hexa-
gons. It is not hard to show that the
best of these three is the hexagonal
pattern, which I recognize from the
honeycomb of bees and also from the
two-dimensional Kepler problem. In-
tuition suggests that this should re-
main the best partition, even when I
widen my scope to allow nonidentical
or irregular polygons. Astonishingly,
the conjecture that the honeycomb pat-
tern is the best, which dates back thou-
sands of years, was only proved last
year, by Hales.

Hales was led to the honeycomb
problem in the wake of the excitement
caused by his proof of the Kepler con-

2000     March–April     157© 2000 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

problem

Kepler
(wet foam)

dimensions possible solution status

proved, Thue 1890
(and other subsequent proofs)

2

proved, Hales 19983

refuted, Weaire
and Phelan 1994

new candidate solution,
Weaire and Phelan 1994

Kelvin
(dry foam)

proved, Hales 19992

3

Figure 7. Status of the major open problems concerning wet and dry foams with equal-sized
bubbles has changed dramatically in the last decade. For wet foams, Thomas Hales of the
University of Michigan proved in 1998 that the “grocer’s” packing is optimal, using argu-
ments similar to those in the caption to Figure 6 (though vastly more technical). In 1999 Hales
resolved the longstanding conjecture that the honeycomb is optimal for a two-dimensional
dry foam. But the step from two dimensions to three has not been achieved yet for dry
foams. Kelvin’s arrangement was long believed to be best, but the Weaire-Phelan foam, dis-
covered in 1994, uses less area per unit cell.

Figure 8. Hexagonal symmetry of bees’ honeycombs has been noted since antiquity. Hales’s work confirms that the hexagonal arrangement
is the one that uses the smallest amount of beeswax to create a single thin layer of cells, open on each end. In an actual honeycomb, the cells
in each layer are capped by three rhombic faces, forming a rhombic dodecahedron. It is an intriguing open question whether honeycombs
still represent an optimal use of resources when the rhombic caps and the thickness of the walls are taken into account. In this photograph
of a brood comb, worker bees have uncapped some cells to clean out chalkbrood mummies (white dots). (Photograph by Jeff Pettis, courtesy
of the Agricultural Research Service, U.S. Department of Agriculture.)



jecture. His announcement that he had
completed a proof catapulted him in-
stantly into the limelight, and in March
of 1999 he was asked to present a pub-
lic lecture on his work at the University
of Michigan. Hales decided to con-
clude the talk by describing some open
problems related to Kepler’s conjec-
ture, giving each one a difficulty rat-
ing. To his mind, the Kelvin question
was clearly a 10-star problem. But he
could not decide how many stars to
give the honeycomb problem. “The
honeycomb question had been around
for more than 2,000 years, but I felt cer-
tain that it was easier than the Kelvin
question,” he said. “Finally I decided, if
it was so simple, that I should sit down
and try to solve it.”

For Hales, the Kepler conjecture, the
honeycomb problem and the Kelvin
question all have the same attraction.
“It’s easy to be trapped by these prob-
lems,” he said. “They sound so simple,
you think they can’t be that hard. By
the time you realize that you’re wrong,
you are in too deep to stop.” Luckily
for Hales, his intuition that the honey-
comb problem was approachable did
not play him false. With the expertise
that he had built up in his years of
work on the Kepler conjecture, it was
only six months before he was able to
announce a proof of the honeycomb
problem. Unlike his proof of the Kepler
conjecture, this new proof makes no
use of computers and is only 20 pages
long; comparatively speaking, it fell
into his lap. Hales wrote, “in contrast
with the years of forced labor that gave
the proof of the Kepler conjecture, I felt
as if I had won the lottery.”

Hales’s proof hinged on finding a
new isoperimetric inequality, relating
the perimeter and the area of a figure,
that was optimized by the hexagonal
pattern. As noted above, the best way
to enclose a single region is within a
circle; however, circles do not fill a
plane without leaving gaps. The prob-
lem for Hales, then, was to find some
appropriate way to “penalize” the cir-
cle for its roundness. This turned out
to be a delicate balancing act. “It was
easy to go overboard,” Hales said,
“and come up with an inequality that
carved too much out of the circle.”
Once he had fine-tuned the area-
perimeter restriction, Hales was able
to build upon work in geometric mea-
sure theory, a branch of mathematics
that has developed over the course of
this century, to prove that the honey-
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Figure 9. Plateau’s principles dramatically limit the kinds of local geometry available to soap
foams. In a stable soap foam, surfaces can only meet one another in two ways: a threefold
junction with three sheets meeting at exactly 120-degree angles (a), or a fourfold junction
with four corner meeting at roughly 109-degree corner angles, as they would at the center of
a tetrahedron (b). Other kinds of junctions quickly decay into combinations of these two sta-
ble types. For example, the fourfold intersection at 90-degree angles shown in (c) would split
into two threefold junctions (d), which have a smaller total area and therefore less surface
energy. In the soap bubble clusters in the photographs, every junction belongs to one of the
two types classified by Plateau. These local restrictions do not prevent the foam from assum-
ing a global geometry of almost bewildering complexity. (Photographs courtesy of Michele
Emmer, University of Rome “La Sapienza.”)

a b

c d



comb pattern is indeed the best way
to tile the plane.

The appearance of the hexagonal
pattern in the honeycomb of bees gives
rise to an interesting philosophical
question: Are bees mathematicians?
The symmetry of the bees’ honeycomb
has fascinated beholders throughout
history; in the Arabian Nights, the bee
says, “My house is constructed accord-
ing to the laws of a most severe archi-
tecture; and Euclid himself could learn
from studying the geometry of my
cells.” The hexagon pattern is certainly
advantageous for the bees, since little
wax is needed to build the walls; but
how do the bees know that this is so? It
is hard to imagine that they perform
the complicated mathematical analysis
that shows that the hexagon pattern is
the best arrangement. One explanation,
popular in the 18th century, was that
bees followed “divine” intuition when
making their cells. With the advent of
Darwinism in the second half of the
19th century, it became fashionable to
attribute it to natural selection. Darwin
himself wrote, “Beyond this stage of
perfection in architecture natural selec-
tion [which now has replaced divine
guidance!] could not lead; for the comb
of the hive-bee, as far as we can see, is
absolutely perfect in economizing la-
bor and wax.” Still others have sug-
gested that the hexagonal design arises
not through any intention or instinct of
the bees but because the cells of the
honeycomb are formed when heated
wax forms bubbles, and these bubbles
should obey the same area-minimizing
principles as soap bubbles.

Curiously, a three-dimensional hon-
eycomb partition is not optimal. A
honeycomb cell is a hexagonal prism
capped off on one end by three rhombi
(Figure 8). The full honeycomb consists
of two layers of these cells, stacked to-
gether so that the caps of one layer fit
into the gaps of the other, like a jigsaw
puzzle. For many years it was believed
that this was the best two-layer
arrangement, but in 1964 the Hungari-
an mathematician L. Fejes Tóth
showed that a hexagonal cell capped
off by part of a truncated octahedron
would produce a tiny saving. Tóth
pointed out, however, that the bees
could have excellent reasons for choos-
ing a slightly less efficient structure. Be-
cause the honeycomb walls have a def-
inite thickness, it is not clear that Tóth’s
structure would indeed be an improve-
ment. In that respect, the honeycomb

is more like a wet foam than a dry
foam. Recently, Weaire and Phelan un-
dertook to construct two-layer foams
with equal-sized bubbles, and they
found that the dry foams did take on
Tóth’s pattern. But when they gradual-
ly added liquid, they wrote, something
“quite dramatic” happened: The struc-
ture suddenly switched over to the
bees’ configuration. It seems, then, that
the bees got it right after all.

Plateau’s Principles
If the two-layer honeycomb problem,
which deals with partitioning part of
space into cells, is so difficult, then the
Kelvin question, about partitioning all
of space, is infinitely more so. It might
seem that every configuration of cells
that fills up space is a potential candi-
date for the answer to the Kelvin ques-
tion; in that case it would be necessary
to check through the entire multitude
of cell arrangements. However, at the
end of the 19th century, the Belgian
physicist Joseph Plateau evolved some
basic principles that guide the search
for viable partitions. Although the
soap films that appear in nature seem
completely random, Plateau made the
surprising observation that the walls
of a soap film can meet in only two
ways. When they meet at a junction, it
is always in threes, and at angles of
120 degrees, as in Figure 9a. What’s
more, the corners of the “rooms” of a
soap film can only meet each other in
groups of four, with corner angles of
about 109 degrees, as at the point at
the center of the tetrahedral pattern of
Figure 9b. Plateau himself was struck
with the simplicity of his rules, writ-
ing, “... these laws lead us to a very re-
markable consequence: the froth
which forms on certain liquids, for ex-
ample on champagne, beer or agitat-
ed soap water, is evidently an assem-
blage of liquid films.... Consequently,
though everything in the froth seems
ruled by chance, it must be subject to
those same laws.” Nature does not
give us a choice.

Although Plateau’s principles seem
unexpected at first, they are rooted in
questions of stability. Imagine that I
have a foam in which four walls meet
at a junction, instead of three; for sim-
plicity I will assume that they meet at
right angles, so that a small portion of
the foam looks like the shape in Figure
9c. By comparison, the foam of Figure
9d, in which the fourfold junction has
split apart into two threefold junctions,

has lower area. The four-wall junction
will therefore be unstable and will
quickly deform into a foam with two
threefold junctions. Similar considera-
tions explain Plateau’s other principle,
although a fully rigorous mathemati-
cal proof of them was not given until
1976 by the Rutgers University mathe-
matician Jean Taylor.

Kelvin’s Partition
Even with Plateau’s principles in
mind, it is not an easy task to decide
whether a given shape or collection of
shapes can fill space without any gaps
or overlap, as Kelvin’s question re-
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Figure 10. Voronoi cells suggest a link
between the Kepler and Kelvin problems
that works well in two dimensions but less
well in three. Given an arrangement of
marked points, the Voronoi cells are
defined by inflating a bubble centered at
each point until the bubbles occupy the
whole plane. The region in darker blue is
the Voronoi cell for point A. At bottom,
when the Voronoi construction is applied to
the bubbles in the optimal circle-packing
(the solution of Kepler ’s problem), the
result is a honeycomb—the solution to
Kelvin’s problem. In three dimensions,
inflating the bubbles for the optimal
sphere-packing (Kepler’s problem) leads to
a lattice that is closely related to Kelvin’s
foam. Unfortunately, this apparently tight
connection was severed when Weaire and
Phelan discovered their foam.
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quires. But it is easy to produce a
wealth of shapes that do fill space, by
building what are known as Voronoi
cells. To construct Voronoi cells I must
start with an infinite collection of tiny
bubbles located at different points in
space, then let the bubbles expand un-
til they bump into each other. If the
centers of the bubbles are chosen with
a little care, the cells produced in this
way will be finite polyhedra that fill
all of space; if the centers are chosen
to form a repeating pattern, the
Voronoi cells will also form a repeating
pattern. I can do the same thing in two
dimensions. (See Figure 10.)

In the plane, the Voronoi-cell con-
struction sets up a tight correspon-
dence between the Kepler and Kelvin
problems. If I place my “bubbles” at
the centers of the pennies in the best

penny packing and expand them into
Voronoi cells, I get a honeycomb,
which is the solution to the Kelvin
question. So in the search for the solu-
tion to the three-dimensional Kelvin
question, it makes sense to start with
the Voronoi cells that correspond to the
best sphere packing, Kepler’s pyramid
arrangement. If I allow the spheres of
the pyramid packing to swell until
they bump into their neighbors, I get
12-sided figures called rhombic dodec-
ahedra. These form a partition of space
with very low surface area, but it is not
quite as low as that of a few other con-
figurations, including Kelvin’s truncat-
ed octahedra. On the other hand, if I
construct Voronoi cells by placing my
bubbles not at the centers of the
spheres but instead as far away from
the spheres as possible, I get truncated

octahedra. Thus, in both two and three
dimensions, the Kepler packing pro-
duces excellent candidates for the an-
swer to the Kelvin question.

The parallel between the two- and
three-dimensional cases only goes so
far, however. In dimension 2, Hales
proved last year that the hexagon pat-
tern is the best partition of the plane. In
dimension 3, the truncated octahedra
themselves are not even a reasonable
candidate for the best decomposition
of space, for they do not obey Plateau’s
requirements. Truncated octahedra are
14-sided polyhedra consisting of six
squares and eight hexagons, so the an-
gles they form at corners are 90 and
120 degrees, not the 109-degree angles
that appear in a foam. Kelvin realized
this, and to correct the angles he dis-
torted the figure slightly, being careful
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Figure 11. Weaire and Phelan’s foam, inspired by chemical clathrates, consists of a repeat-
ing “unit” containing eight bubbles. The front of the unit (a) includes three 14-faced poly-
hedra (aqua, light gray and dark gray) and a dodecahedron (green). The back of the unit (b)
includes three more 14-faced polyhedra (orange, partially visible in the front view; red,
directly behind the aqua polyhedron; and magenta, fitting into a “pocket” formed by the
green, light gray and dark gray polyhedra), and one more dodecahedron (purple). The
semi-transparent view shows how the eight-bubble units fit together to make a foam; tone
such unit is highlighted in pink. (Images a and b courtesy of Kenneth Brakke,
Susquehanna University; large image courtesy of Stuart Levy and John Sullivan,
University of Illinois.)b
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to keep the mean curvature equal to
zero; thus Kelvin’s final figure has
slightly curved faces. Kelvin wrote that
“no shading could show satisfactorily
the delicate curvature of the hexagonal
faces,” but he pointed out that the
shape can be made perfectly by dip-
ping a certain wire structure into a
soap solution and removing it. In fact
he did construct a wire model of his
partition that has subsequently been
called “Kelvin’s Bedspring.”

For over a century, Kelvin’s solution
was the undisputed champion; all that
was missing was a proof. The proof
did not materialize, however, and in
1994 Weaire and Phelan finally ex-
plained why: Kelvin’s partition is not
the best way to fill space.

Clathrate Cages
When Weaire and Phelan started look-
ing for good models for foam struc-
tures, yet another branch of science
came into play: chemistry. Weaire and
Phelan found inspiration in a class of
compounds called clathrates, chemi-
cals in which certain atoms are en-
closed within the crystals of other
atoms. An especially promising struc-
ture was the compound Na8Si46, in
which the eight atoms of sodium (Na)
are contained in “cages” whose corners
are the silicon (Si) atoms. These cages
are exactly the Voronoi cells of the sodi-
um atoms. This crystalline structure is
a good foam candidate because the
cages obey Plateau’s principles, with
walls that meet at threefold junctions
and corners that meet in groups of four
(although like Kelvin’s structure, the
walls must be slightly curved to have
the correct angles). What’s more, ex-
perimental evidence suggests that con-
figurations with low surface area tend
to have many 14-sided polyhedra; the
Na8Si46 molecule consists of eight
cages, six of which are identical 14-
sided cells (the other two cells are 12-
sided). Using this molecule as their
model, Weaire and Phelan designed a
partition of space into eight-room
blocks. This is more complicated than
Kelvin’s partition, in which space is
filled by copies of a single truncated
octahedron room.

Once Weaire and Phelan had con-
structed their partition, they turned to
a tool that was certainly not available
to Kelvin: a computer program called
the Surface Evolver, designed by Ken-
neth Brakke of Susquehanna Universi-
ty, which they used to adjust the curva-

ture of the walls so that their surface
area would be as small as possible. In-
terestingly, Weaire and Phelan began
their investigation of this structure in
an attempt to approach physical ques-
tions of wet foams, and not to try to
surpass Kelvin’s truncated octahedron.
They ended with what Weaire called a
“startling result”: a structure that out-
did Kelvin’s!

Weaire and Phelan’s successful rival
to Kelvin’s structure is not necessarily
the end of the story. There are many
other clathrate chemicals that might
give rise to interesting divisions of
space, and there is even the possibility
that the best way to partition space into
cells of equal volume is not a repeating
pattern at all but a completely random
decomposition. “I suspect that it will be
20 years or more before this question is
finally resolved,” Hales said.

Constructing Real Foams
At this point you may be wondering
why one would not simply build a
foam out of equal-volume bubbles and
look at the configuration it forms. In
fact, over the years many have tried the
experiment. Until recently, the best
known of these efforts were experi-
ments conducted in the 1940s by the
physicist Edwin Matzke, who created a
foam of 1,900 bubbles one bubble at a
time, using a syringe. At the end of this
laborious procedure, he examined 600
bubbles at the center of the foam.
Matzke found that the average num-
ber of sides belonging to each cell was
very close to 14 (the number of sides
of Kelvin’s truncated octahedron), but
he did not find a single copy of
Kelvin’s cell. In fact, he did not discov-
er any ordered pattern at all. In an
amusing address in 1950 to the Torrey
Botanical Club at Columbia University,
he warned of the dangers of leaping
from mathematical models to real-
world conclusions “in the twinkling of
an eye.”

For many years, Matzke’s experi-
ments appeared to have closed the
subject. Weaire and Phelan, however,
suspected that his observations were
misleading. Matzke’s method for cre-
ating a foam was so time-consuming
that often a full day elapsed between
the creation and the measurement of a
bubble. This opened the door to seri-
ous errors, because as time passes, air
tends to leak across foam walls from
one bubble to another, altering their
size and shape. Weaire and Phelan de-

cided to try the experiment anew, and
they built a foam using the time-hon-
ored and speedy method of blowing
bubbles through a straw. They found
several of Kelvin’s cells near the sur-
face of the foam and, deeper inside,
several small fragments similar to their
own structure. Weaire and Phelan ob-
served that “with the benefit of hind-
sight, it would appear that the subject
has suffered in the past from an excess
of theorizing and a shortage of experi-
ments.” As techniques for building
foams are refined, it may be hoped that
they will produce clearer and clearer
pictures of the structures that nature
chooses for its foams.

The overthrow of Kelvin’s partition
by a less symmetric, more complicated
structure came as an intriguing, some-
what disturbing piece of news to sci-
entists who believe that the best con-
figuration should display beautiful
symmetry. However, the Weaire-Phe-
lan structure may enjoy only tempo-
rary status as the optimal foam struc-
ture. We should recall Penrose’s
dictum: When to us the contest may
appear to be between two well-under-
stood possibilities, nature may sud-
denly pull out of its hat a completely
different and infinitely more elegant
solution.
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