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Throughout most of antiquity, people who 
thought about the shape of the world 

generally assumed they lived on a vast flat 
plane—albeit a slightly bumpy one. It was a 
reasonable belief that weathered thousands of 
years and almost as many philosophers.

Legend has it that Aristotle, during the 
fourth century B.C., watched a ship disappear 
over the horizon—hulls first, then sails, then 
mast. The ship, he noticed, did not become 
smaller and smaller, disappearing into noth-
ingness. It sank over the horizon. His conclu-
sion that the earth must be round (support-
ing with observation and deduction an earlier 
speculation by Pythagoras) was one of the 
great intellectual achievements of all time. 

Over the intervening millennia, we have 
discovered many other secrets about our plan-
et, our galaxy and our universe. But a funda-
mental question remains unanswered. What 
is the shape of the universe within which we 
reside? 

Fortunately, recent observations in astron-
omy are beginning to hint at the shape of the 
spatial universe—or at least limit the wide 
range of possibilities. One type of shape, called 
a Euclidean 3-manifold, has arisen as a prime 
candidate. Amazingly, mathematicians have 
shown that there are only 18 Euclidean 3-man-
ifolds and, of these, only ten are probable can-
didates for the universe.

We would like to help the reader visualize 
these candidates for the universe by first de-
scribing simpler analogues that can be thought 
of as two-dimensional universes. Then we will 
visualize the three-dimensional shapes and 
discuss how ongoing work in astronomy may 
help us to finally answer the question: What is 
the shape of the universe? 

Topology and Surfaces
Mathematicians who talk about the shape 
of the universe are referring to its topological 
shape. In topology, objects are treated as if they 
are made of rubber. In this medium a dough-
nut is the same thing as a coffee cup. That is, 
we can deform a very malleable doughnut into 
the shape of a coffee cup without any cutting 
or pasting.

But, topologically speaking, the surface of a 

doughnut, a torus, is not the same as a sphere, 
the surface of a solid ball. There is no way to 
mold one into the other without cutting and 
pasting.

There are many more surfaces that are to-
pologically distinct from these two. For in-
stance, we can add handles to the torus. Each 
handle creates a new hole. Thus, the torus, a 
one-handled surface, has one hole, whereas a 
two-handled surface has two. Topologically, 
the number of handles defines the surface. Any 
two surfaces with different numbers of handles 
are distinct. With this information we can al-
ready generate an infinite number of distinct 
surfaces.

We call all of these surfaces 2-manifolds—
they all share a defining property. Around any 
point on these surfaces exists a disk of points. 
The disk might be very small and slightly 
bowed, but its existence tells us that, locally, 
the surface is two-dimensional.

This definition may sound technical, but we 
encounter this property every day. From our 
vantage point on the surface, the Earth looks 
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flat. Locally, the surface of the Earth appears 
two-dimensional—there is a disk of points 
around every point on the surface. If we only 
saw this local picture, it would be reasonable 
to believe that the Earth is an infinite plane, a 
sphere, a torus, or any one of the infinite num-
ber of multi-handled surfaces.

Some of these topological shapes can be 
pretty tricky to comprehend, even for topolo-
gists. To make visualizing them easier, topolo-
gists have developed techniques that simplify 
the process.

One way to picture a torus is to start with 
a square, called a fundamental domain for the 
torus. Pretend the square is a piece of paper, 
and construct a cylinder by gluing the left side 
of the square to the right side. The top and bot-
tom sides of the paper have become the circles 
on the top and bottom of the cylinder. Gluing 
those two circles together creates a torus.

We can keep track of a two-dimensional 
bug walking around the surface of the torus 
by watching the bug move around the square. 
Each time the bug reaches the top edge of the 
square, transport it to the corresponding point 
on the bottom edge of the square. Each time 
the bug walks off the right edge of the square, 
transport it to the corresponding point on the 
left edge of the square. 

This system for visualizing a torus has two 
advantages. First of all, we can keep track 
of an action that is taking place in three-di-
mensional space, a bug walking on a torus, 
with a picture in two-space, a bug on a square 
with some transport features. Secondly, the 
plane has a nice Euclidean geometry. In Eu-
clidean geometry, the parallel postulate holds; 
for each line and a point off the line, there is 
a unique line parallel to the first that passes 
through the point. And the sum of the angles 
of a triangle always equals 180 degrees. These 
statements are not always true in other geom-
etries (spherical and hyperbolic geometries 
will be explored later). But, because the square 
is sitting in this Euclidean geometry, we can 
give its geometry to the torus. We say that the 
torus is a Euclidean 2-manifold. 

Instead of a square, we could form the to-
rus from a parallelogram by gluing its oppo-
site edges together. Although this would not 
change the topology of the resulting surface, it 
could change the lengths of the loops that go 
the short and long way around the torus, and 
the angles between them. There are an infinite 
number of possible ways to model a torus as 

we vary our fundamental domain over the 
possible parallelograms. 

However, we cannot use just any quadrilat-
eral as a fundamental domain. When we glue 
one edge to another, they must be the same 
length. We don’t want to stretch or contract 
an edge while gluing—that would ruin the 
Euclidean geometry we want the surface to 
inherit.

In addition to parallelograms, we can also 
use a hexagon. By gluing together the opposite 
edges, we again obtain the torus. 

Now we are ready to step up a dimension.

The Universe and 3-Manifolds.
No matter where we have been in the uni-
verse, if we picked a point nearby and con-
sidered all of the points within a distance of 
two feet from that point, we then observe a 
three-dimensional ball of points. Cosmologists 
believe this is true throughout the universe. 
That special property leads them to conclude 
that the universe is a 3-manifold.

But which 3-manifold is it? Trying to deter-
mine which 3-manifold describes the universe 
is a daunting challenge. Mathematicians long 
ago concluded that, as with 2-manifolds, there 
are an infinite number of these shapes. In and 
of itself, that is not a problem. We could still 
hope to make a complete list of the possibili-
ties, just as mathematicians have done for two-
dimensional surfaces. Nobody has yet suc-
ceeded in creating such a list. Luckily, there are 
physical properties of the observed universe 
that can help limit the possibilities without a 
complete list. One of these properties, curva-
ture, could have major implications for the 
topology of the universe.  

About 300,000 years after the Big Bang, the 
temperature of the universe cooled enough to 
allow electrons and protons to combine, form-
ing the first atoms. When this happened, the 
radiation now known as cosmic microwave 
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Figure 1. Like the surface of 
Earth, the surface of any 2-
manifold appears more and 
more “flat” as one zooms 
toward any point.

twist



background radiation, which had previous-
ly been constantly scattered by free charged 
particles, was suddenly able to travel, unim-
peded, throughout the expanding universe. 
This radiation is surprisingly uniform, vary-
ing only slightly over great distances. Unifor-
mity like this should only occur in a universe 
whose curvature does not vary with either 
position or direction.

Therefore, the spatial universe is believed 
to have one of three possible geometries: 
spherical geometry with positive curvature, 
Euclidean geometry with zero curvature, or 
hyperbolic geometry with negative curvature. 
Two-dimensional analogues of spherical, Eu-
clidean and hyperbolic geometry appear in 
Figure 2.

These three geometries have very differ-
ent properties. For example, recall that in Eu-
clidean geometry, the sum of the angles of a 
triangle adds up to 180 degrees. In spherical 
geometry this is not the case. If three points are 
placed on a sphere, the angles between them 
sums to more than 180 degrees. In hyperbolic 
geometry, triangles can be formed where the 
sum of their angles is a positive number strict-
ly less than 180 degrees.

By the first half of the 19th century, Carl 
Friedrich Gauss understood the possibility 
that our universe might not be Euclidean. He 
compared the angles of the triangle formed by 
three mountain peaks in Germany. Their sum, 
within the tolerance of error, was 180 degrees. 
On the small (astronomically speaking) scale 
that Gauss measured, the universe appeared 
to be Euclidean.

We cannot safely extrapolate Gauss’s moun-
tain data to the universe at large. Perhaps the 
angles of a triangle formed by three distant 
galaxies do not add up to exactly 180 degrees. 
Perhaps the geometry of the universe is spheri-
cal or hyperbolic but appears Euclidean within 
the tiny region that we can observe.

A variety of recent experiments, examining 
everything from supernovae to cosmic micro-
wave radiation, have explored this mystery. 
A recent study measured the angular pow-
er spectrum of the cosmic microwave back-
ground radiation using high-altitude balloons 
over Antarctica. There was a peak in the power 
spectrum that, the researchers believe, can only 
be explained by the existence of cold dark mat-
ter—relatively large, slow-moving particles 
that do not emit light—in a Euclidean uni-
verse. Other studies have also leant support to 
the possibility that the universe is Euclidean. 
Perhaps Gauss was right all along.

If one believes the universe is Euclidean, the 
number of possible shapes shrinks dramati-
cally. In 1934, Werner Nowacki proved that 
there are only 18 possible Euclidean 3-mani-
folds. (W. Hantschze and H. Wendt published 
a more direct classification in 1935.) Instead of 

an infinite list of 3-manifolds, we need only 
consider 18 possibilities for the spatial uni-
verse. Understanding the properties and ap-
pearances of these manifolds may supply the 
information needed to determine experimen-
tally the universe’s shape.

Of these 18 Euclidean 3-manifolds, eight are 
nonorientable; they contain an orientation-re-
versing loop. If you flew from Earth along such 
a loop, you would eventually return home with 
your orientation reversed. Your heart would be 
on the wrong side of your body. Your wrist-
watch would turn counterclockwise instead of 
clockwise. At least, this is how you would ap-
pear to the other residents of Earth. You would 
see no difference in yourself. To you, it would 
appear that you had returned to a mirror copy 
of the Earth. All of the clocks would run coun-
terclockwise. All of the writing would appear 
as mirror writing. Every person’s heart would 
appear on the wrong side of his body.

As fascinating as the idea of a nonorient-
able universe is, it is unlikely that we are 
living in one. If the universe were nonorient-
able, cosmologists predict that we would 
observe energy radiating from the bound-
ary zones where regions dominated by anti-
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Figure 2. Two-dimensional analogues of hyperbolic, Euclidean and spherical geom-
etry show how the summed angles of a triangle and the relation between parallel 
lines change in different geometries.

Figure 3. Carl Friedrich 
Gauss tested whether light 
rays curve as they travel 
over the spherical surface 
of Earth by measuring the 
angles of a triangle formed 
between three mountain 
peaks. The angles added 
to 180 degrees—establish-
ing that locally, light trav-
els along Euclidean paths.



matter and matter meet. This strange inter-
action has never been observed. Therefore, 
although it is possible that, if the universe is 
large enough, these boundary zones exist out-
side of our field of vision, it is relatively safe 
to restrict our discussion to the ten orientable 
Euclidean 3-manifolds.

Possible Euclidean Universes
Three-manifolds are extremely difficult to vi-
sualize. We will attempt to simplify this task 
by always describing the Euclidean 3-man-
ifolds with the technique used to visualize 
2-manifolds. Remember that we first used a 
square as the fundamental domain of a torus. 
A torus was created when the opposite edges 
of the square were glued together. Now, when 
we visualize 3-manifolds, we will use the same 
technique, but with a 3-dimensional object as 
the fundamental domain.

The 3-torus is the generalization of the torus 
in a higher dimension. Instead of gluing to-
gether the opposite edges of a square, the op-
posite faces of a cube are joined. In the 3-torus, 
every point on a face of the cube is glued to the 
corresponding point at exactly the same spot 
on the opposite face.

If you were somehow in this 3-manifold and 
looked forward, you would see the back of 
your own head. You would see copies of your-
self in each face of the cube: forward, back-
ward, left, right, above and below. Past these 
copies, other copies would be visible—copies 
as far as the eye could see. Standing in a 3-to-
rus and looking out is similar to standing in a 
fun-house room of mirrors. But in the 3-torus, 
the images are never reversed (see Figure 5).

It is important to note the circular nature of 
this and many other manifolds. If this 3-mani-

fold were really the shape of the universe, you 
could fly from Earth in a particular direction 
and, without ever changing course, eventu-
ally return home. This sounds impossible, but 
a similar phenomenon exists on Earth. If you 
head due west along the Equator, it is common 
knowledge that you will one day return to 
your starting point.

Another interesting property of the 3-torus 
is its relation to the two-dimensional torus (2-
torus) explored earlier. If we cut the cube into 
tiny vertical slices, we would obtain a series of 
squares. The opposite edges of these squares 
would be glued together because those edges 
composed the opposite faces of the cube. The 
3-torus is like a continuous Rolodex, a circle 
of 2-tori. Remember that the front and back 
square are connected; they were originally 
the faces of the cube. Topologists denote this 
manifold T2× S1, where T2 denotes the 2-torus 
and S1 denotes the circle. This is an example 
of a torus bundle, consisting, as it does, of a 
bundle of tori.

A cube is not the only shape that generates a 
3-torus. Just as the parallelogram generated a 
2-torus, a parallelepiped (a three-dimensional 
object with parallelograms for faces) easily 
generates a 3-torus. By gluing together the op-
posite faces of different parallelepipeds, spaces 
with different closed curves and with different 
angles between those curves are generated.

These, and all other finite manifolds, supply 
an easy way to picture an expanding universe. 
If the fundamental domain of a manifold ex-
pands over time, then the space it generates 
will expand with it. Every point in an expand-
ing space is moving farther away from ev-
ery other point, exactly what we see in our 
universe. Keep in mind, however, that points 
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Figure 4. A cube, when glued correctly, generates a 
3-Torus. The blue face is glued to the other blue face, 
orange to orange, and front to back. Worms traveling 
through the glued faces demonstrate the orientations 
of the gluings—there are no rotations of any degree.



near one face will always remain very close to 
points on the opposite face; opposite faces are 
glued together, regardless of the fundamental 
domain’s size.

The 1⁄2 -Twist Cube Space is very similar to the 
3-torus. The fundamental domain even remains 
a cube, although parallelepipeds work just as 
well. Four of the faces are glued the same way. 
The remaining two, the front and back faces, 
are glued together, but with a 180-degree twist. 
The top of the front face is glued to the bottom 
of the back face. If you were in this manifold 
and looked out one of these faces, you would 
still see a copy of yourself, an upside-down 
copy. Beyond that, a normal, “right side up” 
copy would be visible, and so forth.

Like the 3-torus, the 1⁄2 -Twist Cube Space 
can be vertically sliced into a deck of 2-tori. 
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Figure 6. In the 1 ⁄2 -Twist Cube Space the front and back 
faces of the cube from Figure 4 are glued together with 
a 180-degree twist. The purple worm enters the front 
face near the right edge but leaves the back face near 
the left edge, upside down.

Figure 5. Cut out the figure to the right and fold it 
into the cube shown above. This is how a 3-Torus 
would look if a green worm were sitting in the mid-
dle of it; copies of the worm appear, continuing to in-
finity in every direction. (To preserve your magazine, 
print your own 3-torus folding cube at 
www.americanscientist.org/articles/01articles/
adamscube.html)



This time, however, the front 2-torus is glued 
to the back 2-torus with a 180-degree twist. The 
1⁄2 -Twist Cube Space is also a torus bundle.

The next manifold is the 1⁄4 -Twist Cube Space. 
This torus bundle is generated exactly the 
same way as the 1⁄2 -Twist Cube Space, but with 
only a 90-degree twist, not the 180-degree rota-
tion we just used. Because only a quarter turn 
is mandated, a random parallelepiped will not 
always generate this Euclidean manifold. The 
fundamental domain’s front and back faces 
must be squares to avoid distortion. Staring 
out the front face of the cube you would see 
copy after copy of yourself, each one a 90-de-
gree rotation of the preceding copy.

The 1⁄3 -Twist Hexagonal Prism Space, as its 
name implies, does not use a cube as its fun-
damental domain. The hexagonal prism that 
generates this manifold may be less familiar, 
but is still relatively simple. 
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Figure 7. The front face is glued to the back face with a 
90-degree twist in the 1 ⁄4 -Twist Cube Space. Again the 
position of the purple worm illustrates the rotation.

90°

cut

hexagonal prism



Generating the 1⁄3 -Twist Hexagonal Prism 
Space is straightforward. Glue each parallelo-
gram directly across to its opposite face. Then 
glue the two hexagonal faces together with a 
120-degree twist. Each hexagonal slice of this 
manifold is a torus; therefore this too is a torus 
bundle. If you looked out one of the hexagonal 
faces you would see that each copy is rotated 
120 degrees more than the preceding copy. The 
copies would not be rotated if you looked into 
a parallelogram face.

The 1⁄6 -Twist Hexagonal Prism Space is con-
structed in a similar way to the 1⁄3 -Twist Hex-
agonal Space. This time, however, the front 
hexagonal face is glued to the back hexagonal 
face with a rotation of only 60 degrees. The 
top edge of one hexagonal face is glued to the 
second edge of the opposite face. Again, in 
this torus bundle, the remaining parallelogram 
faces are glued straight across.

The Double Cube Space, or Hantschze-Wendt 
manifold, is a radically different manifold. 
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Figure 9. The 1 ⁄6 -Twist Hexagonal Prism Space is characterized by a 
60-degree twist in the front and back face gluing.

Figure 8. The 1 ⁄3 -Twist Hexagonal Prism Space has a hexagonal prism, 
not a cube as its fundamental domain. It contains only one twisted 
gluing—when the purple worm leaves through the front, it returns 
through the back face after a 120-degree rotation.

Figure 10. The Double Cube Space has a complicated set of gluings. 
The back of the top cube (black) is glued to the back of the bottom 
cube (black) with a vertical reflection; the left and right sides are 
switched. The front of the top cube (clear) is glued to the front of the 
bottom cube (clear) with another vertical reflection. The green and 
orange faces are both glued together with 180-degree twists. Finally, 
the blue faces are glued together without any rotation.



This finite space is not a torus bundle and 
has an unusual gluing pattern. The Double 
Cube Space, however, still uses a very simple 
fundamental domain: two cubes, one sitting 
on top of the other. Figure 10 shows the glu-
ing pattern that generates this manifold. It is 
important to note that not all of the faces are 
glued across. Instead, the top front and top 
back faces are glued to the faces directly be-
low them. In this space, you would see your-
self with a peculiar perspective. If you were 
tall enough, you would see your feet directly 
in front of your face.

With the Double Cube Space the list of finite 
orientable Euclidean 3-manifolds is complete. 
It is likely that the shape of the universe lies 
within these so-called compact manifolds. Many 
cosmologists believe, for both aesthetic and 
theoretical reasons, that the universe is not infi-
nite in nature. That assertion makes sense. We 
all think it’s foolish to believe the Earth is an in-
finite plane—why do we continue to think that 
the universe is infinite? It would be very diffi-
cult to come up with a physical mechanism for 
the creation of an infinite universe. How would 
it have started? However, it is still important 
to consider the four noncompact, orientable 
Euclidean 3-manifolds until substantial real-
world evidence is raised against them.

The first, and simplest, of the infinite 3-man-
ifolds is one we are already familiar with. It 
is R3, Euclidean 3-Space, the space from high 
school geometry where three axes extend out 
into infinity. You would see no copies of your-
self, twisted or otherwise, if you looked out 
into Euclidean 3-Space.

The fundamental domain of Slab Space is, 
unsurprisingly, an infinite slab of space. The 

top of the slab is an infinite plane glued di-
rectly onto the bottom of the slab, another in-
finite plane. These planes must be parallel to 
one another but can be rotated or shifted arbi-
trarily. There is no need to be concerned with 
these changes because of the infinite nature 
of the planes—no matter how far we move or 
rotate one plane, it will always affix perfectly 
to the other.

Topologists use shorthand product nota-
tion to describe this manifold. The manifold 
contains an interval of planes that, after being 
glued together, form a circle similar to the 
3-torus Rolodex. Topologists describe this as 
R2× S1, where R2 represents the plane and S1, 
the circle. 

The final two 3-manifolds use infinitely tall 
chimneys as their fundamental domain. Chim-
neys are made up of four faces, arranged as 
the edges of a parallelogram. Chimneys lack 
both a top and a bottom—their four faces ex-
tend infinitely in both of those directions. As 
with the cubes or hexagonal prism, how this 
fundamental domain is glued together dictates 
which manifold is formed.

A Chimney Space is formed when both sets 
of opposite faces are glued together, straight 
across. After gluing, the parallelogram cross-
section is nothing more than a 2-torus. There-
fore, topologists refer to this space as the prod-
uct T2× R1.

Add a 180-degree rotation to one of the 
gluings in a chimney space to form a Twisted 
Chimney Space. This twist, combined with the 
infinite height of the chimney, provides some 
unusual characteristics. Examine, for instance, 
a point, very high up, at one extreme of the 
Twisted Chimney Space’s fundamental do-
main. Compare that point to another point, 
a great distance down, at the fundamental 
domain’s other extreme. They seem very far 
apart. However, after the faces are glued to-
gether, those points are surprisingly close.

Recognizing the Shape of Our Universe
How can we further whittle down this list of 
possibilities? Astronomers must gather more 
evidence and perform more experiments. 
Mathematicians must develop procedures that 
take advantage of astronomical data.

The simplest procedure is to look for cop-
ies of our Galaxy in the night sky. If we find 
copies, we can determine the gluing of the 
universe’s fundamental domain. If the uni-
verse happens to be a 1⁄4 -Twist Cube Space, 
un-rotated copies of our galaxy would be vis-
ible on four sides, while 90-degree rotations 
could be seen on the remaining two. Seems 
easy, right? Unfortunately, this technique 
holds little promise.

As you know, light travels at a finite speed. 
Looking out into the universe, we, in effect, 
look back in time. Even if we someday find 
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Figure 11. Slab Space is the space contained within two infinite slabs of space. This 
space is infinite in two directions (x and y) and finite in one (z). The top face can be 
glued to the bottom face with any rotation or translation. It is shown here with no 
rotation and no translation.

Euclidean 3-Space



an image of our Galaxy, we may not recognize 
it. Our Galaxy may have looked completely 
different in its younger years. It would be too 
difficult, with the sheer number of galaxies out 
in the universe, to determine which particular 
one was a copy of our own.

Some cosmologists, after giving up on find-
ing our Galaxy, still hope to find repeating 
patterns in the sky: copies of quasars, gamma-
ray bursts or galaxy clusters. Others have pio-
neered new ways to attack the problem. 

Earlier in this article it was concluded that the 
universe had a constant curvature. The unifor-
mity of cosmic microwave background (CMB) 
radiation strongly suggested this. Remember, 
however, that the CMB has slight variations, 
tiny changes on the order of 10–5 kelvins.

These small variations in the CMB show us 
the minute density differences of the early uni-
verse. When the universe cooled and expanded, 
the extra density in these areas slowed these 
areas’ expansion. This effect compounded, 
eventually clumping the region’s matter into 
galaxies, stars and planets. Looking at a map 
of the CMB allows us to look back in time, past 
this intergalactic clutter, at the original density 
differences. We look at the blueprints of the uni-
verse, blueprints that are less than one-thou-
sandth the size of our present-day universe. 

To more readily understand the potential of 
CMB maps, it is best to consider the example of 
a two-dimensional torus universe. In the upper 
panel of Figure 14, you can see how that torus 
universe “looks.” The large squares show the 
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Figure 12. Chimney Space is contained within an infinitely tall chimney. 
To better show the gluing pattern, this figure is drawn, as were other 
manifolds, from inside the space. Thus the infinitely tall chimney ap-
pears to be an infinitely long hallway. In this space, the blue faces and 
the orange faces are each glued together without any twisting.

300,000 years after the Big Bang

present

Figure 13. Although one pair of faces (orange) are glued together with-
out any rotation, the blue faces are glued together with a 180-degree 
twist in Twisted Chimney Space. The yellow worm enters the bottom 
face close to our visual field but returns through the top face a long 
way away, far down the chimney

Figure 14. So large now, the 
universe was much smaller 
300,000 years after the Big 
Bang. Cosmologists hop-
ing to determine the shape 
of the universe look for 
ways to look back in time. 
They may be able to see 
many more repetitions of 
the universe’s fundamen-
tal domain if they succeed. 
Those repetitions may re-
veal the gluing pattern of 
the universe.



fundamental domain of the torus repeating, 
with a two-dimensional “reference” galaxy 
appearing within each copy. The bottom of the 
figure shows the two-dimensional universe 
300,000 years after the Big Bang—what a CMB 
map will show us. The torus universe would 
appear smaller, so the copies of the square are 
smaller in the CMB. Mapping the CMB of the 
two-dimensional universe, or our own, creates 
a snapshot of the past.

In a three-dimensional universe we observe 
all of the spherical sky. Residents of a two-di-
mensional universe would all be two-dimen-
sional creatures, only able to observe a circle’s 
worth of CMB information at one time. If the 
circle of temperature variations that they were 
able to see was smaller than the universe’s 
fundamental domain, they would have no 
indication of the shape of the universe. If, 
however, their circle of vision were larger than 
a single fundamental domain, the creatures 
would see an intersection. More importantly, 
they would see patterns repeat. Remember, 
every square shown is identical, a copy of the 
fundamental domain.

Once the two-dimensional creatures looked 
into their visual circle, they could try to find 
points with matching temperatures. If there 
were two different points on their visual circle 
with exactly the same temperature, the points 
might correspond to the same area in the uni-
verse. If there were enough matching tempera-
tures in the two-dimensional creatures’ visual 
circle, they could conclude that they were liv-
ing in a torus universe.

We, however, live in a three-dimensional 
universe. We observe a sphere’s worth of infor-
mation. And yet, when we map out the CMB 
variations, we confront the same problem as 

the two-dimensional creatures. If our sphere of 
vision is smaller than the fundamental domain 
of the 300,000-year-old universe, we discover 
nothing. If, however, our sphere of vision is 
larger than the CMB universe’s fundamental 
domain, then the sphere will overlap itself, 
intersecting along circles.

If those overlaps occur, cosmologists will 
search for patterns in the temperature varia-
tions. If there are two circles on the sphere that 
have the exact same sequence of CMB varia-
tion, the cosmologists can compare the circles’ 
orientations. If the circles match up directly 
across, there is a gluing but no twisting. Some, 
however, may match after a quarter-twist, or a 
half-twist. If enough of these matching circles 
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Figure 16. Cosmologists be-
lieve that they can use CMB 
maps to determine the glu-
ing pattern of the universe. 
CMB maps allow cosmolo-
gists to “see” the universe 
300,000 years after the Big 
Bang, when it was much 
smaller. Therefore, cosmolo-
gists will look for repeating 
patterns in a CMB map. An-
alyzing the placement and 
orientation of the repetitions 
may reveal the shape of the 
universe. An example of 
how this technique would 
be used to analyze the CMB 
map of a theoretical two-
dimensional torus universe 
is shown above. The visual 
circle (top) can be divided 
into a fundamental domain 
and six other regions (a–f). 
Each of those regions corre-
sponds to an area within the 
fundamental domain. How 
much each region is rotated 
reveals part of the gluing 
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Figure 17. The Microwave Anisotropy Probe was 
launched in 2001 and will generate a complete map of 
the CMB at a much higher resolution (on the order of 
0.2 degrees) than the Cosmic Background Explorer.

Figure 15. The Cosmic Background Explorer satellite generated the map of the cosmic microwave background 
(CMB) shown above. When the Microwave Anisotropy Probe and the European Space Agency’s Planck satellite 
measure the differences in the CMB they will record many more details and gather much more information. 
(Image and Probe photo courtesy of the Microwave Anisotropy Probe Science Team, NASA.)



are found, the fundamental domain of the uni-
verse and its gluing pattern will be unearthed.

Cosmologists, however, will have nothing 
to study until a precise temperature map of the 
CMB is generated.

In 1989 NASA sent up its first try: the Cos-
mic Background Explorer, a satellite that has 
since completed a temperature map of the 
CMB from space. Unfortunately, the satellite’s 
angular resolution, on the order of 10 degrees, 
was not fine enough to make the precise mea-
surements cosmologists needed.

This spring, NASA began its second at-
tempt and launched the Microwave Anisot-
ropy Probe. This satellite will map out the tem-
perature fluctuations in the CMB with angular 
resolution on the order of 0.2 degrees, a vast 
improvement. Finally, in 2007, the European 
Space Agency plans to map these fluctuations 
with the Planck Satellite. It has an angular res-
olution of 5 arcseconds, 144 times more power-
ful than the Microwave Anisotropy Probe.

If these satellites are successful we will have 
precise CMB maps in four to ten years. If our 
sphere of vision is large enough, if our mea-
surements are accurate enough, and if our data 
set is good enough, we will know the shape of 
the universe. Aristotle would be pleased.
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