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No, not that W. I won’t be drawn into 
presidential politics here. The W I want 
to discuss is something else entirely: the 

Lambert W function, a mathematical contrivance 
that has been getting a fair amount of atten-
tion lately. The buzz began in the world of com-
puter-algebra systems such as Macsyma, Maple 
and Mathematica, but word of W has also been 
spreading through journal articles, preprints, 
conference presentations and Internet news 
groups. The W function even has its own poster 
(see http://www.orcca.on.ca/LambertW).

The concept at the root of W can be traced 
back through more than two centuries of the 
mathematical literature, but the function itself 
has had a name only for the past 10 years or so. 
(A few years longer if you count a name used 
within the Maple software but otherwise un-
published.) When it comes to mathematical ob-
jects, it turns out that names are more important 
than you might guess.

Without further ado, here is the definition of  
Lambert W: It is the inverse function associated 
with the equation:

WeW = x.

What does that mean? Some readers of this col-
umn will grasp it instantly, but I am not going 
to pretend that I am one of them. It took me a 
while to figure out how W works, and even lon-
ger to see why the concept might be considered 
interesting or important. At the risk of inflicting 
severe tedium on those who are more adept at 
algebra and analysis, I want to retrace my own 
path toward understanding what W is all about. 
It’s a fairly long and wiggly path.

Single U and W
In trying to make sense of the expression WeW, 
the first question is not “why W?” but “why 
e?” The e in the formula is Euler’s number, the 
second-most-famous constant in all of mathe-
matics, often introduced as “the base of the natu-
ral logarithms”; but then the natural logarithms 
are usually defined as “logarithms taken to the 

base e,” which is not much help. Another way 
of defining e, originally derived from the study 
of compound interest, avoids this circularity: e 
is the limiting value of the expression (1+1/n)n as 
n tends to infinity. Thus we can approximate the 
value of e by setting n equal to some arbitrary, 
large number. With n=1,000,000, for example, we 
get six correct digits of e: 2.71828.

Now, with e in hand, consider an equation  
somewhat simpler than the one for W; we might 
call it single-U:

eU = x.

This equation defines the exponential function,  
also written exp(U). The function maps each given 
value of U to a corresponding value of x, namely 
e raised to the power U. If U is a positive integer, 
we can calculate the function’s value by simple 
arithmetic: Just multiply e by itself U times. For 
nonintegral U, the procedure is not quite so obvi-
ous but is still well-defined; the left part of Figure 
1 shows the elegant curve generated.

The equation eU = x also defines an inverse 
function; we just need to read the equation 
backward. Whereas the forward function maps 
a value of U to a value of x, the inverse func-
tion takes a value of x as input and returns the 
corresponding value of U. In other words, the 
inverse function finds the power to which e 
must be raised to yield a given value of x. This 
is another well-known, textbook function: the 
natural logarithm, written log(x) or ln(x). The 
log function has the same graph as the expo-
nential function but reflected across the diago-
nal, as shown in the right part of Figure 1.

Sometimes it’s helpful to think of functions 
like these as if they were machines. The exp func-
tion works like a meat grinder: Dump a U into 
the input hopper, turn the crank, and out comes 
an x equal to eU. The same machine can calcu-
late logarithms if we run numbers through it 
backwards and turn the crank the other way, but 
there is an important caveat: When the machine 
runs in reverse, some inputs can jam the gears. 
For example, what output should the machine 
produce if you ask it for the logarithm of 0 or 
–1? (If you have a scientific calculator handy, see 
how a real machine answers these questions.)

104   American Scientist, Volume 93

COMPUTING SCIENCE

WHY W?

Brian Hayes

Brian Hayes is Senior Writer for American Scientist. Address: 
211 Dacian Avenue, Durham, NC 27701; bhayes@amsci.org



2005    March–April     105www.americanscientist.org © 2005 Sigma Xi, The Scientific Research Society. Reproduction 
with permission only. Contact perms@amsci.org.

The problem is that the logarithm function 
works only over a limited domain. Exponentia-
tion is defined over the entire real number line; 
any real value of U, whether positive or nega-
tive, produces a value of exp(U), and that value is 
always a positive real number. The inverse func-
tion is not so well-mannered: As the right side 
of Figure 1 suggests, log(x) is defined only if x is 
positive. This limitation can be sidestepped by 
venturing off the real number line into the wilds 
of the complex plane. If the value of log(x) is al-
lowed to be a complex number, with both a real 
and an imaginary part, then log(–1) has a definite 
value: According to a famous formula of Euler, it 
is equal to π i, where i is the imaginary unit, the 
square root of –1. The W function is also defined 
throughout the complex plane, but in this article 
I shall confine myself to the straight and narrow 
path of real numbers. However, see Figure 4.

One more simple fact about logarithms will be 
needed below. The logarithm of the product of 
two numbers is equal to the sum of the logarithms 
of the factors: log(xy)=log(x)+log(y). Likewise for 
quotients: log(x/y)=log(x)–log(y). These relations 
were the main reason for inventing logarithms 
in the first place: They convert multiplication 
and division into the easier tasks of addition and 
subtraction.

W Coming and Going
There is an obvious family resemblance between 
single-U and W, between the equations eU = x 
and WeW = x. In the case of the forward W func-
tion, if we know how to calculate eW, then it’s a 
trivial matter to calculate WeW: just multiply by 
W. The resulting curve is shown in the left part 
of Figure 2. In overall shape it looks much like 
the exponential curve, although for large W it 
rises more steeply. Where eW and WeW really 
part company is to the left of W = 0. Whereas eW 
is always positive, WeW dips into negative ter-
ritory, reaching a minimum at the point W = –1, 
x = –1/e. As W tends toward negative infinity, 
both eW and WeW approach 0, but one from 
above and the other from below.

Taking the inverse of this function—solving 
WeW = x for W instead of for x—finally brings 
us to the Lambert W function. Just how to solve 
for W is a matter I’ll return to below, but for 
now it’s enough to flip the graph of the func-
tion about its diagonal, as in the right side of 
Figure 2; the inverse graph is drawn in more 
detail in Figure 3. Just as the forward function 
resembles the exponential curve, the inverse 
function appears similar to the logarithm. The 
curves for log(x) and W(x) cross at x = e, where 
both are equal to 1. Where things get most in-
teresting, again, is to the left of x = 0. Whereas 
log(x) is undefined for any x ≤ 0, W(x) contin-
ues to have a value down to x = –1/e, or about 
–0.37. Indeed, when x lies in the range between 
–1/e and 0, W(x) has not just a value but two 
values. For example, W(–0.2) could be equal to 
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Figure 1. Exponential and logarithmic functions, defined by the equa-
tion eU = x,  can be taken as simplified models of Lambert W. The ex-
ponential curve (left) gives x as a function of U; the logarithmic curve 
(right) is the inverse, finding the value of U corresponding to any given 
x. Flipping either graph along the diagonal yields the other graph.
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Figure 2. The Lambert W function (red curves) is defined by the equa-
tion WeW = x. The direct function (left) maps values of W to values of x, 
whereas the inverse function (right), which is of greater mathematical 
interest, takes x as the input and computes the corresponding value of 
W. The exponential and logarithmic functions (gray curves) are shown 
for comparison. The red and gray curves cross at the point W = 1, x = e. 
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Figure 3. Detailed view of the inverse W function shows its most 
distinctive feature: the region between x = –1/e and x = 0 where the 
function has two values at each point. For example, at x = –0.2, W(x) 
evaluates to either –0.259 or –2.543. There are many such two-valued 
functions, including square root, but W is the simplest in which there is 
no trivial relation between corresponding values on the two branches.
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either –0.26 or –2.54. Plugging either of these W val-
ues into the formula WeW  yields the x value –0.2.

For a mathematical function, multiple values 
are an embarrassment of riches; a well-bred func-
tion is supposed to map each value in its domain 
to a single value in its range. But in practice mul-
tiple values are not uncommon, particularly with 
inverse functions. The square root is a familiar 
example: Whereas squaring 2 yields the unique 
result 4, the square root of 4 could be either +2 
or –2. Some of the trigonometric functions are 
even worse. Every angle has just one sine, but 
the inverse function, the arc sine, wraps around 
to produce infinitely many values.

The problem with multivalued functions is 
knowing which value, or branch, to choose. 
Most calculators and programming languages 
give precedence to positive roots and to arc 
sine values between –90 and +90 degrees, but 
there is no fundamental justification for these 
choices. In the case of Lambert W, the part of 
the curve with W > –1 has been labeled the 
“principal branch,” but again this is mainly a 
matter of convention. (In the complex plane, W 
has infinitely many branches.)

W—What Is It Good For?
The Lambert W function may make a pretty curve, 
but what’s it good for? Why should anyone care? 
By mixing up a few symbols we could generate 
an endless variety of function definitions. What 
makes this one stand out from all the rest?

If you ask the same question of more familiar 
functions such as exp and log and square root, the 
answer is that those functions are tools useful in 
solving broad classes of mathematical problems. 
With just the four basic operations of arithme-
tic, you can represent the solution of any linear 
equation. Adding square roots to the toolbox 
allows you to solve quadratic equations as well. 
Expanding the kit to include the trigonometric, 

exponential and logarithmic functions brings 
still more problems within reach. All of these 
well-known functions, and perhaps a few more, 
are classified as “elementary.” The exact mem-
bership of this category is not written in stone, 
but it excludes more specialized tools such as 
Bessel functions.

A few years ago, a brief, unsigned editorial 
in Focus, the newsletter of the Mathematical As-
sociation of America, asked: “Time for a new 
elementary function?” The function proposed 
for promotion to the core set was Lambert W. 
Whether W ultimately attains such canonical 
status will depend on whether the mathemati-
cal community at large finds it sufficiently use-
ful, which won’t be clear for some years. In the 
meantime, I can list a few applications of W dis-
covered so far.

One place where W turns up in pure math-
ematics is the “power tower,” the infinitely iter-
ated exponential

xxxxx ...

.

For large x, this expression soars off to infinity 
faster than we can follow it, but Euler showed that 
the tower converges to a finite value in the domain 
between x = e–e (about 0.07) and x = e1/e (about 
1.44). Within this realm, the value to which the 
infinite tower converges is W(–log(x)) / –log(x).

W has another cameo role in the “omega con-
stant,” which is a distant of cousin of the golden 
ratio. The latter constant, with a value of about 
1.618, is a solution of the quadratic equation 
1/x = x–1. The omega constant is the solution of 
an exponential variant of this equation, to wit: 
1/ex = x. And what is the value of that solution? It 
is W(1), equal to about 0.567143.

Of more practical import, W also appears in 
solutions to a large family of equations known as 
delay differential equations, which describe situ-
ations where the present rate of change in some 

Figure 4. When W and x are interpreted as complex numbers (with real and imaginary components), the Lambert W function is defined 
throughout the complex plane. The two surfaces shown here represent the real part (left) and the imaginary part (right) of W(x) for values of x 
near the origin of the complex plane. The white stripe running along each surface from right to left is the projection of the real axis—the line 
along which numbers have zero imaginary part. On the real surface, values of W along the portion of this line to the right of the point x = –1/e 
correspond to the graphs in Figures 2 and 3. The complex surface has a wide discontinuity beginning at the same point. The graphs are based 
in part on Mathematica programs published at http://functions.wolfram.com.
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quantity depends on the value of the quantity 
at an earlier moment. Behavior of this kind can 
be found in population dynamics, in econom-
ics, in control theory and even in the bathroom 
shower, where the temperature of the water now 
depends on the setting of the mixing valve a few 
moments ago. Many delay differential equations 
can be solved in terms of W; in some cases the 
two branches of the W function correspond to 
distinct physical solutions.

A recent article by Edward W. Packel and 
David S. Yuen of Lake Forest College applies the 
W function to the classical problem of describing 
the motion of a ballistic projectile in the pres-
ence of air resistance. In a vacuum, as Galileo 
knew, the ballistic path is a parabola, and the 
maximum range is attained when the projectile is 
launched at an angle of 45 degrees. Air resistance 
warps the symmetry of the curve and greatly 
complicates its mathematical description. Packel 
and Yuen show that the projectile’s range can 
be given in terms of a W function, although the 
expression is still forbiddingly complex. (They 
remark: “Honesty compels us to admit at this 
point that the idea for using Lambert W to find 
a closed-form solution was really Mathematica’s 
and not ours.”)

Still another example comes from electrical en-
gineering, where T. C. Banwell of Telcordia Tech-
nologies and A. Jayakumar of Anadigics show 
that a W function describes the relation between 
voltage, current and resistance in a diode. In a 
simple resistor, this relation is given by Ohm’s 
law, I = V/R, where I is the current, V the volt-
age and R the resistance. In a diode, however, 
the relation is nonlinear: Although current still 
depends on voltage and resistance, the resistance 
in turn depends on current and voltage. Banwell 
and Jayakumar note that no explicit formula for 
the diode current can be constructed from the 
elementary functions, but adding W to the reper-
tory allows a solution.

Other applications of W have been discov-
ered in statistical mechanics, quantum chemistry, 
combinatorics, enzyme kinetics, the physiology 
of vision, the engineering of thin films, hydrol-
ogy and the analysis of algorithms. 

Evaluating W
It’s all very well to express the solutions of prob-
lems in terms of W, but then how do we find the 
value of the resulting function? In the case of 
logarithms and trigonometric functions, the stan-
dard method for many years was to look up the 
answer in a big printed table; now we push the 
appropriate button on a calculator. For W, how-
ever, there are no published tables, and so far no 
scientific calculator has a built-in Lambert W key. 
Several computer algebra systems know how to 
evaluate the W function, but if you don’t have ac-
cess to such software, you’re on your own.

Suppose we already know how to calculate ex-
ponentials and logarithms; can we then solve the 

equation WeW = x? As noted above, the forward 
version is easy: just evaluate eW and then mul-
tiply by W. At first glance, the inverse function 
looks like it might be wrestled to submission by 
a similar tactic. If we can solve for x by calculat-
ing an exponential and then multiplying, can’t 
we solve for W by dividing and then taking a 
logarithm?

Dividing both sides of the equation by W 
gives eW = x/W. Then, taking the logarithm of 
both sides produces log(eW) = log(x/W). On the 
left hand side, the logarithm of eW is simply W. 
On the right hand side we can rewrite the loga-
rithm of a quotient as the difference of two log-
arithms, and so we wind up with this equation:

W = log(x) – log(W).

We have succeeded in getting W off by itself 
on the left side, but unfortunately there’s still a 
log(W) on the right. Thus we don’t have a closed-
form solution, a formula that would allow us to 
plug in an x and immediately get back the corre-
sponding W. This failure is not merely a result of 
my ineptitude; no algebraic wizardry will yield a 
finite closed-form solution.

On the other hand, the equation above is not 
totally worthless. If we have a guess about the 
value of W, then we can plug it into the right 
hand side of the equation to get an even better 
guess, then repeat the process until we’re satis-
fied with the accuracy of the approximation. For 
some values of x—well away from 0—this simple 
iterative scheme converges quickly on the correct 
result. The algorithms used in computer-algebra 
software are more efficient, accurate and robust, 
but they still rely on successive approximations.

Whence and Whither W?
The modern history of Lambert W began in the 
1980s, when a version of the function was built 
into the Maple computer-algebra system and giv-
en the name W. Why W? An earlier publication by 
F. N. Fritsch, R. E. Shafer and W. P. Crowley of the 
Lawrence Livermore Laboratory had written the 
defining equation as wew = x. The Maple routine 
was written by Gaston H. Gonnet of the Institut 
für Wissenschaftliches Rechnen in Zurich, who 
adopted the letter w but because of typographic 
conventions in Maple had to capitalize it. 

A few years later Robert M. Corless and David 
J. Jeffrey of the University of Western Ontario 
launched a discussion of W and its applications in 
what has turned out to be a long series of journal 
articles and less-formal publications. The most 
influential paper, issued as a preprint in 1993 but 
not published until 1996, was written by Corless 
and Jeffrey in collaboration with Gonnet, David E. 
G. Hare of the University of Waterloo and Donald 
E. Knuth of Stanford University. This was the pa-
per that named the function in honor of the 18th-
century savant Johann Heinrich Lambert.

Lambert, who wrote on everything from car-
tography to photometry to philosophy, never 
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published a word on the function that now bears 
his name. It was his eminent colleague Leonhard 
Euler who first described a variant of the W func-
tion in a paper published in 1779, two years after 
Lambert’s death. So why isn’t it called the Euler 
W function? For one thing, Euler gave credit 
to Lambert for the earliest work on the subject. 
Perhaps more to the point, Corless, Jeffrey and 
Knuth note that “naming yet another function 
after Euler would not be useful.”

In the years between Euler and Maple, the W 
function did not disappear entirely. The Dutch 
mathematician N. G. de Bruijn analyzed the 
equation in 1958, and the British mathematician 
E. M. Wright wrote on the subject at about the 
same time. In the 1970s and 80s there were sev-
eral more contributions, including that of Fritsch, 
Shafer and Crowley. Nevertheless, the literature 
remained widely scattered and obscure until 
the function acquired a name. In a 1993 article, 
Corless, Gonnet, Hare and Jeffrey remark: “For 
a function, getting your own name is rather like 
Pinocchio getting to be a real boy.”

Some of the recent publications on W go be-
yond mere explication of mathematics; they car-
ry a whiff of evangelical fervor. Those for whom 
W is a favorite function want to see it elevated to 
the canon of standard textbook functions, along-
side log and sine and square root. I am reminded 
of another kind of canonization—a campaign for 
the recognition of a local saint, with testimonials 
to good works and miracles performed.

The advocates of W do make a strong case. In 
a 2002 paper, Corless and Jeffrey argue that W is 
in some sense the smallest step beyond the pres-
ent set of elementary functions. “The Lambert W 
function is the simplest example of the root of an 
exponential polynomial; and exponential poly-
nomials are the next simplest class of functions 
after polynomials.”

But the elevation of W has not won universal 
assent. R. William Gosper, Jr., has suggested that 
a better choice might be the square of W, that 
is, WeW2 = x, which eliminates the multivalued 
branching on the real line. (In a play on “Lam-
bert W,” Gosper calls this the Dilbert lambda 
function.) And Dan Kalman of American Uni-
versity has suggested a formulation based on 
eW/W = c, with an inverse function he calls glog.

Woo Woo Woo
My own misgivings about Lambert W pertain 
not to the function itself but to the name. Again: 
Why W? Over the years, English-speaking peo-
ple have inflicted far too many Ws on the rest of 
the world, from the Wicked Witch of the West 
to the W boson to the World Wide Web. (Again 
I forgo comment on the current occupant of the 
White House.) We purse our lips painfully to 
pronounce doubleyou, doubleyou, doubleyou. 
With 26 letters to choose from, why do we keep 
fixing upon the only letter in the English alpha-
bet with a polysyllabic name? (I acknowledge 

that I have made matters worse by writing this 
column, in which every sentence of the text in-
cludes at least one instance of the letter w.)

It’s not too late to right the wrong. On a bus in 
Italy—a country that doesn’t even have a w in its 
alfabeto—I overheard a fragment of a conversation: 
Someone was reading a URL and pronounced the 
first part “woo woo woo.” It’s a shrewd accom-
modation to linguistic wimperialism. We should 
all adopt it. Let us keep the letter but change the 
way we say it. Whether it’s Lambert W or George 
W. or www, it’s woo all the way.
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Dennis Flanagan
1919–2005

Dennis Flanagan, the editor of 
Scientific American for 37 years, 
invented a communications 

medium—a channel where scientists 
can present and explain their work 
both to one another and to a wider 
public. American Scientist broadcasts 
today on the same channel.

In the 1940s, Flanagan was a writer 
on the staff of Life. Science was part of 
his beat there, but he covered much 
else as well, including sports and war 
news. He wrote the captions for Robert 
Capa’s famous photographs of the D-
Day landing on Omaha Beach. Life’s 
scheme for telling a story with words 
and pictures was an art form that Flan-
agan cultivated throughout his career.

In 1947 Flanagan joined with Gerard 
Piel, a former colleague at Life, and 
Donald H. Miller, Jr., in a plan to launch 
a new magazine of science. When they 
learned that Scientific American, a mag-
azine with a distinguished history, was 
failing financially, they bought and 
transformed it. In the new enterprise 
Flanagan became editor, Piel was pub-
lisher and Miller general manager. 

A crucial innovation came about 
by accident. Flanagan had assumed 
they would hire a staff of professional 
writers, who would go out to visit sci-
entists and then report on what they 
had learned. But the budget wouldn’t 
support such a staff and, furthermore, 
writers with the necessary skills were 
hard to find. So Flanagan began invit-
ing scientists to tell their own stories 
with the help of an editor and an il-
lustrator. The system worked better 
than anyone could have guessed, and 
it became the keystone of Scientific 
American’s editorial policy. 

The collaboration of scientist and ed-
itor was not always smooth-running. 
When an edited manuscript was sent 
to the author, it was accompanied by 
an elegantly crafted Flanagan letter, ex-
plaining that “our editorial proposals 
are intended to make the story more 
accessible to the general reader.” Some 
authors were grateful for the help; 
some replied, “I never knew I could 
write so well”; some howled with out-
rage that not one sentence had sur-
vived intact. The discontented would 
complain, “If you’re going to change 

everything anyway, why not just write 
it yourself?”

But having the scientist’s name at-
tached to the article, even if the text 
was heavily edited, made all the dif-
ference. For one thing, it kept the mag-
azine honest. However arduous the 
negotiations, an article could not be 
published until the author consented; 
this was a safeguard against a multi-
tude of errors and distortions. Second, 
the policy placed the magazine within 
the world of science, whereas the cus-
tomary journalistic stance is that of an 
outsider looking in. It’s in this respect 

that Flanagan opened up a new chan-
nel of communication. Among sci-
entists there have always been a few 
artful expositors who need no help to 
explain their work, but now even the 
less articulate have a way to communi-
cate with the world at large.

Compromise was always the heart 
of the process. Even as authors griped 
about heavy-handed editing, read-
ers complained that the articles were 
too long and too difficult—not edited 
enough. Flanagan himself, paraphras-
ing Churchill, often remarked that it 

was the worst way to run a science 
magazine except for every other way 
that had ever been tried.

Flanagan was a strong personality, 
with a passionately held opinion on 
absolutely everything that went into 
making the magazine, from the place-
ment of commas to the proper plural 
of millennium. For 436 consecutive is-
sues, he read every word of every ar-
ticle, generally three times. There was 
nothing in Scientific American that did 
not bear his stamp. And yet he also 
practiced a severe editorial reticence. 
Nowhere in the archives of Scientif-
ic American is there one bit of prose 
signed Dennis Flanagan.

The reason was not shyness about 
writing under his own name; else-
where he did so with great charm and 
verve. His book Flanagan’s Version: A 
Spectator’s Guide to Science on the Eve of 
the 21st Century was published in 1988.

Flanagan retired from Scientific 
American in 1984, and the magazine 
soon thereafter changed ownership 
and direction. The channel of commu-
nication he created, however, remains 
open. Other publications learned the 
trick. Furthermore, there was soon a 
great diaspora of science writers and 
editors who had learned the art from 
Flanagan and who carried it elsewhere. 
I was among them. At one time or an-
other, Flanagan protégés have held 
editorial positions with The Sciences, 
Discover, Technology Review, Science, 
IEEE Spectrum, Physics Today, Natural 
History, Muse and American Scientist.

His influence on American Scientist 
was quite direct. Flanagan was ap-
pointed to Sigma Xi’s publications 
committee in 1988, and he served as its 
chairman for 14 years. He was instru-
mental in bringing me to the maga-
zine in 1990. Even some of the elegant 
locutions of his letters to authors are 
still echoing in the correspondence of 
this magazine. American Scientist has 
its own traditions and history, distinct 
from those of the other magazine with 
a similar name, but we share the goal 
of building a conduit between scien-
tists and readers. Flanagan showed us 
how to do it.

Dennis Flanagan died January 14 at 
his home in New York.—B.H.

Flanagan, seen here in his office at Scien-
tific American circa 1980, had strong opinions 
about the writing of captions to accompany 
photographs and other illustrations. He ar-
gued that they should consist of full sentenc-
es, not mere labels. And he imposed a rule 
that they should exactly fit the space allot-
ted, with last line flush against right margin.
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