Logo IMG
HOME > PAST ISSUE > July-August 2010 > Article Detail


The Widening Gyrus

Concert pianists could be model organisms for studying the physiological basis of intellectual greatness

Charles T. Ambrose

The Brains of Concert Pianists

It is now recognized clinically that the human brain has remarkable plasticity and potential for restoring lost function. Following localized injuries to the brain, neurological deficits can often be ameliorated by special training. In other words, changes in the brain can be electively produced. Compensating for lost function is one thing, but what would we expect to find in healthy people who perform mentally demanding, fine movements (for example, typists and musicians)? Do they develop discernable and consistent morphological changes in certain motor areas of their brains?

Pianists were considered good candidates for studies of this sort early on. In the 1920s, Rudolf Klose examined the brain of a young piano prodigy, Goswin Sökeland (1872–1900), but reported (in five densely packed German pages) only the gross morphology—“der Gyrus supramarginalis ist ganz enorm entwickelt,” and so on. Today a detailed brain study of highly proficient pianists would examine neuronal topography and other details of fine structure and might disclose additional distinctive features in that ganz enorm gyrus.

One current consensus of neurogenesis is that new neurons may result from the transformation of stem cells and their migration into relevant sites. The physiological basis for these changes has yet to be defined but may involve adjacent accessory cells releasing chemical factors and/or endothelial cells stimulating the growth of new circulatory vessels (angiogenesis).

comments powered by Disqus


Of Possible Interest

Computing Science: Computer Vision and Computer Hallucinations

Spotlight: Making the Cut

Infographic: Orion's First Test Flight

Subscribe to American Scientist