MY AMERICAN SCIENTIST
LOG IN! REGISTER!
SEARCH
 
RSS
Logo IMG
HOME > PAST ISSUE > Article Detail

MARGINALIA

Storied Theory

Science and stories are not only compatible, they're inseparable, as shown by Einstein's classic 1905 paper on the photoelectric effect

Roald Hoffmann

Better Theory Through Stories

One might think that experiments are more sympathetic than theories to storytelling, because an experiment has a natural chronology and an overcoming of obstacles (see my article, "Narrative," in the July-August 2000 American Scientist). However, I think that narrative is indivisibly fused with the theoretical enterprise, for several reasons.

One, scientific theories are inherently explanatory. In mathematics it's fine to trace the consequences of changing assumptions just for the fun of it. In physics or chemistry, by contrast, one often constructs a theoretical framework to explain a strange experimental finding. In the act of explaining something, we shape a story. So C exists because A leads to B leads to C—and not D.

Two, theory is inventive. This statement is certainly true for chemistry, which today is more about synthesis than analysis and more about creation than discovery. As Anne Poduska, a graduate student in my group, pointed out to me, "theory has a greater opportunity to be fanciful, because you can make up molecules that don't (yet) exist."

Three, theory often provides a single account of how the world works—which is what a story is. In general, theoretical papers do not lay out several hypotheses. They take one and, using a set of mathematical mappings and proof techniques, trace out the consequences. Theories are world-making.

Finally, comparing theory with experiment provides a natural ending. There is a beginning to any theory—some facts, some hypotheses. After setting the stage, developing the readers' interest, engaging them in the fundamental conflict, there is the moment of (often experimental) truth: Will it work? And if that test of truth is not at hand, perhaps the future holds it.

The theorist who restates a problem without touching on an experimental result of some consequence, or who throws out too many unverifiable predictions, will lose credibility and, like a long-winded raconteur, the attention of his or her audience. Coming back to real ground after soaring on mathematical wings gives theory a narrative flow.

Let me analyze a theoretical paper to show how this storytelling imperative works. Not just any paper, but a classic appropriate to the centennial of Albert Einstein's great 1905 papers.





» Post Comment

 

EMAIL TO A FRIEND :

Subscribe to American Scientist