MY AMERICAN SCIENTIST
SEARCH

COMPUTING SCIENCE

# Connect the Dots

The graphs studied by graph theorists have nothing to do with the wiggly-line charts that plot stock prices. Here is a definition of a graph, in all its glory of abstraction: A graph is a pair of sets, V and E, where every element of E is a two-member set whose members are elements of V. For example, this is a graph: V = {a, b, c}, E = {{a, b}, {a, c}}.

So much for definitions; most of us prefer to think of our graphs graphically. And in fact everyone knows that what graph theory is really about is connecting the dots. The set V is made up of vertices (also known as nodes), which are drawn as dots. The set E consists of edges (also called arcs, links or bonds), and each edge is drawn as a line joining the two vertices at its end points. Thus the graph defined abstractly above looks like this:

Most of the time, a picture is worth at least a thousand sets, and yet there are reasons for retaining the more formal definition. When you look at a graph drawing, it's hard not to focus on the arrangement of the dots and lines, but in graph theory all that matters is the pattern of connections: the topology, not the geometry. These three diagrams all depict the same graph:

Each of the graphs sketched above is in one piece, but not all the vertices in a graph have to be joined by edges; disconnected components can be parts of a single graph. "Multigraphs" are allowed to have multiple edges connecting the same pair of vertices. And some graphs have self-loops: edges whose two ends are both attached to the same vertex. Another variation is the directed graph, where each edge can be traversed in only one direction.