Logo IMG
HOME > PAST ISSUE > Article Detail


The Science of Scientific Writing

If the reader is to grasp what the writer means, the writer must understand what the reader needs

George Gopen, Judith Swan

Locating the Action

Our final example adds another major reader expectation to the list.

Transcription of the 5S RNA genes in the egg extract is TFIIIA-dependent. This is surprising, because the concentration of TFIIIA is the same as in the oocyte nuclear extract. The other transcription factors and RNA polymerase III are presumed to be in excess over available TFIIIA, because tRNA genes are transcribed in the egg extract. The addition of egg extract to the oocyte nuclear extract has two effects on transcription efficiency. First, there is a general inhibition of transcription that can be alleviated in part by supplementation with high concentrations of RNA polymerase III. Second, egg extract destabilizes transcription complexes formed with oocyte but not somatic 5S RNA genes.

The barriers to comprehension in this passage are so many that it may appear difficult to know where to start revising. Fortunately, it does not matter where we start, since attending to any one structural problem eventually leads us to all the others.

We can spot one source of difficulty by looking at the topic positions of the sentences: We cannot tell whose story the passage is. The story's focus (that is, the occupant of the topic position) changes in every sentence. If we search for repeated old information in hope of settling on a good candidate for several of the topic positions, we find all too much of it: egg extract, TFIIIA, oocyte extract, RNA polymerase III, 5S RNA, and transcription. All of these reappear at various points, but none announces itself clearly as our primary focus. It appears that the passage is trying to tell several stories simultaneously, allowing none to dominate.

We are unable to decide among these stories because the author has not told us what to do with all this information. We know who the players are, but we are ignorant of the actions they are presumed to perform. This violates yet another important reader expectation: Readers expect the action of a sentence to be articulated by the verb.

Here is a list of the verbs in the example paragraph:

are presumed to be
are transcribed
is...can be alleviated

The list gives us too few clues as to what actions actually take place in the passage. If the actions are not to be found in the verbs, then we as readers have no secondary structural clues for where to locate them. Each of us has to make a personal interpretive guess; the writer no longer controls the reader's interpretive act.

As critical scientific readers, we would like to concentrate our energy on whether the experiments prove the hypotheses.

Worse still, in this passage the important actions never appear. Based on our best understanding of this material, the verbs that connect these players are "limit" and "inhibit." If we express those actions as verbs and place the most frequently occurring information—"egg extract" and "TFIIIA"—in the topic position whenever possible,* we can generate the following revision:

In the egg extract, the availability of TFIIIA limits transcription of the 5S RNA genes. This is surprising because the same concentration of TFIIIA does not limit transcription in the oocyte nuclear extract. In the egg extract, transcription is not limited by RNA polymerase or other factors because transcription of tRNA genes indicates that these factors are in excess over available TFIIIA. When added to the nuclear extract, the egg extract affected the efficiency of transcription in two ways. First, it inhibited transcription generally; this inhibition could be alleviated in part by supplementing the mixture with high concentrations of RNA polymerase III. Second, the egg extract destabilized transcription complexes formed by oocyte but not by somatic 5S genes.

[*We have chosen these two pieces of old information as the controlling contexts for the passage. That choice was neither arbitrary nor born of logical necessity; it was simply an act of interpretation. All readers make exactly that kind of choice in the reading of every sentence. The fewer the structural clues to interpretation given by the author, the more variable the resulting interpretations will tend to be.]

As a story about "egg extract," this passage still leaves something to be desired. But at least now we can recognize that the author has not explained the connection between "limit" and "inhibit." This unarticulated connection seems to us to contain both of her hypotheses: First, that the limitation on transcription is caused by an inhibitor of TFIIIA present in the egg extract; and, second, that the action of that inhibitor can be detected by adding the egg extract to the oocyte extract and examining the effects on transcription. As critical scientific readers, we would like to concentrate our energy on whether the experiments prove the hypotheses. We cannot begin to do so if we are left in doubt as to what those hypotheses might be—and if we are using most of our energy to discern the structure of the prose rather than its substance.

comments powered by Disqus


Of Possible Interest

Engineering: The Story of Two Houses

Letters to the Editors: The Truth about Models

Computing Science: Belles lettres Meets Big Data

Subscribe to American Scientist