Logo IMG


The Power of Sound

Sound waves in "thermoacoustic" engines and refrigerators can replace the pistons and cranks that are typically built into such machinery

Steven Garrett, Scott Backhaus


The authors gratefully acknowledge the generosity with which Greg Swift has shared his theoretical insights and technological innovations during the past 20 years with the world-wide community of thermoacousticians.

© Steven L. Garrett, Scott Backhaus


  • Armstrong, N. 1999. The Engineered Century, The Bridge 30(1):14–18.
  • Backhaus, S., and G. W. Swift. 1999. A thermoacoustic-Stirling heat engine. Nature 399:335–338. [CrossRef]
  • Backhaus, S., and G. W. Swift. 2000. A thermoacoustic Stirling heat engine. Journal of the Acoustical Society of America 107:3148–3166. [CrossRef]
  • Benedict, R. E. 1991. Ozone Diplomacy: New Directions in Safeguarding the Planet. Cambridge, Mass.: Harvard University Press.
  • Ceperley, P. H. 1979. A pistonless Stirling engineThe traveling wave heat engine. Journal of the Acoustical Society of America 66:1508–1513.
  • Chen, R-L., and S. L. Garrett. 1998. Solar/heat driven thermoacoustic engine. In Proceedings of the 16th International Congress on Acoustics 2:813?814, eds. P. K. Kuhl and L. A. Crum. Woodbury, New York: Acoustical Society of America.
  • Garrett, S. L. 1999. Reinventing the engine. Nature 399:303–305.
  • Garrett, S. L., J. A. Adeff and T. J. Hofler. 1993. Thermoacoustic refrigerator for space applications. Journal of Thermophysics and Heat Transfer 7:595–599. [CrossRef]
  • Gifford, W. E., and R. C. Longsworth. 1966. Surface heat pumping. Advances in Cryogenic Engineering 11:171–179.
  • Migliori, A., and G. W. Swift. 1988. A liquid-sodium thermoacoustic engine. Applied Physics Letters 53:355–357.
  • Reid, R. S., W. C. Ward and G. W. Swift. 1998. Cyclic thermodynamics with open flow. Physical Review Letters 80:4617–4620. [CrossRef]
  • Rott, N. 1980. Thermoacoustics. Advances in Applied Mechanics 20:135–175. [CrossRef]
  • Sondhaus, C. 1850. Ueber dei Schallschwingungen der Luft in erhitzten Glasrhren und in gedeckten Pfeifen von ungleicher Weite. Annalen der Physik und Chemie 79:1–34.
  • Swift, G. W. 1988. Thermoacoustic engines. Journal of the Acoustical Society of America 88:1145–1180.
  • Swift, G. W. 1995. Thermoacoustic engines and refrigerators. Physics Today 48(7):22–28.
  • Swift, G. W. 1997. Thermoacoustic natural gas liquefier. Proceedings of the DOE Natural Gas Conference, Morgantown, West Virginia: Federal Energy Technology Center.
  • Swift, G. W. 1997. Thermoacoustic engines and refrigerators. In Encyclopedia of Applied Physics 21:245?264, ed. G. L. Trigg. New York: Wiley-VCH.
  • Swift, G. W., D. L. Gardner and S. Backhaus. 1999. Acoustic recovery of lost power in pulse tube refrigerators. Journal of the Acoustical Society of America 105:711–724.
  • Wheatley, J. C., G. W. Swift and A. Migliori. 1986. The natural heat engine. Los AlamosScience 14:2–33. [CrossRef]
  • Yazaki, T., A. Iwata, T. Maekawa and A. Tominaga. 1998. Traveling wave thermoacoustic engine in a looped tube. Physical Review Letters 81:3128–3132.

comments powered by Disqus


Of Possible Interest

Feature Article: Where the Xingu Bends and Will Soon Break

Spotlight: Making the Cut

Computing Science: Clarity in Climate Modeling

Subscribe to American Scientist