Subscribe
Subscribe
MY AMERICAN SCIENTIST
LOG IN! REGISTER!
SEARCH
 
Logo IMG
HOME > PAST ISSUE > March-April 2009 > Article Detail

FEATURE ARTICLE

Real-time Flood Forecasting

We’ve learned to predict typhoons. What is required to predict the floods they bring?

Chintu Lai, Ting-Kuei Tsay, Chen-Ho Chien, I-Ling Wu

Flood Inundation Zone Estimation

Figure%206.%20Flood%20forecasting%20data%20are%20combined%20with%20GIS%20dataClick to Enlarge ImageWith data about the volume and timing of flows in hand, we use geographic information system (GIS) data to estimate the regions that will be inundated by flooding, based on precise contour models of the terrain. Our objective in adding this model was to be able to forecast for civil authorities and the general public the actual neighborhoods most likely to be flooded when a typhoon of a given magnitude invades the area. Rather than generate a computationally very expensive three-dimensional hydrodynamic solution, we opt for the considerably simpler expedient of a mass-conservation approach, estimating the inundation zone by assessing precomputed volumes of water against the volumes of lower-lying areas defined in the GIS datasets. Figure 6 illustrates over-bank flows along the Sitze section of the Keelung River. The figure depicts color-coded inundation zones for various water depths and the corresponding inundation volumes.

The combination of the river channel flood-stage forecast model and the flood-inundation estimation model offers policy makers and flood-protection authorities a set of reliable and dynamic tools with which to predict oncoming floods, allowing them to issue timely warnings and launch appropriate emergency responses.




comments powered by Disqus
 

EMAIL TO A FRIEND :

Of Possible Interest

Engineering: The Story of Two Houses

Letters to the Editors: The Truth about Models

Spotlight: Briefings

Subscribe to American Scientist