BOOK REVIEW
Port and Walnuts
K. Soundararajan
Letters to a Young Mathematician. Ian Stewart. xii + 210
pp. Perseus Books, 2006. $22.95.
Many recent popular books on mathematics paint a beautiful portrait
of the discipline as a whole (Mathematics: A Very Short
Introduction, by Fields Medalist William Timothy Gowers) or of
a particular problem (recent books on the Riemann hypothesis) or
even of a particular number (Gamma: Exploring Euler's
Constant, by Julian Havil). Ian Stewart's latest book,
Letters to a Young Mathematician, is quite unusual in
that it focuses on what mathematicians do and why that is worth
doing, and in general deals in a very practical way with the
question of what it means to be a mathematician.
The recent popular portrayal that is perhaps closest in spirit to
Stewart's book is the television show Numb3rs, with its
entertaining depictions of mathematics being used to solve crimes.
But the program's hero, Charlie Eppes, a math professor at a
university that resembles Caltech, seems to be able to devote most
of his time to helping the FBI, without having to worry about
committee work or teaching undergraduates or even research.
G. H. Hardy's A Mathematician's Apology (1940) was a
brilliant attempt at answering the sorts of questions Stewart
addresses here, although some of Hardy's views have become outmoded.
Indeed, Stewart says in his preface that Letters to a Young
Mathematician is meant to be an updating of Hardy's
book. Although his prose lacks some of Hardy's eloquence,
Stewart gives a fuller picture of what it means to be a
mathematician today.
Stewart's book is written as a series of 21 letters to a young woman
named Meg as she progresses through high school, university,
graduate school, a postdoctoral position and a tenuretrack job,
finally obtaining tenure. Each letter is a short essay addressing a
single topic ("Fear of Proofs," "Why Do Math?"
and so forth). The style is pleasant and easygoing, and the author's
gentle humor shines through—you may not laugh out loud, but
there are plenty of reasons to smile. Without ever seeming
heavyhanded or condescending, Stewart manages to give much good
advice on a variety of subjects, including how to learn math and how
to teach it, what to look for in a thesis adviser, how to be
effective on committees, how to manage career issues and the need to
balance work on big problems with work on more manageable ones.
Although there are no equations in this book, it does contain much
interesting mathematics. Stewart has a wonderful knack for
communicating the spirit of a mathematical idea by means of apposite
examples. To illustrate the idea of proof, he uses the
"SHIPDOCK" theorem, demonstrating that if one wishes to
change the word SHIP to the word DOCK by interposing a series of
other words, each of which differs from the preceding word by only
one letter (as in the sequence SHIP, SHOP, CHOP, COOP, COOK, COCK,
DOCK), the series must include at least one word with two vowels in
it. He has a very nice explanation (again without equations) of why
angles cannot be trisected using straightedge and compass
constructions. The book also offers overviews of Andrew Wiles's work
on Fermat's last theorem and Grigori Perelman's proof of the
Poincaré conjecture (recently adjudged by Science to
be the breakthrough of the year for 2006).
I was fascinated by "the sausage conjecture," of which I
had been unaware. If you plan to wrap a number of tennis balls in
plastic film and want to know which arrangement would consume the
least amount of film, the curious answer is that for 56 balls or
fewer, the best arrangement is all in a line, like a sausage, but
for more than 56 balls the best arrangement is like that of potatoes
in a sack. For tennis balls in five or more dimensions, "a
sausage" is supposedly always the answer; this has been proved
in at least 42 dimensions, but the question is still open!
On the whole, I found Letters to a Young Mathematician to
be engaging and a fun read. It is a worthy updating of Hardy's
classic but is quite different from it. As much as I love A
Mathematician's Apology, I now find it a little sad. Hardy
begins by saying that "it is a melancholy experience" to
find himself writing about mathematics instead of doing it, and some
of this melancholia manifests itself in the book. Stewart is much
more positive and lively, and is convinced of the value not only of
doing mathematics, but also of encouraging others to pursue it.
Stewart and Hardy also differ notably in their attitudes toward
"pure and applied mathematics." Hardy's belief that only
dull mathematics is useful is no longer viable, and Stewart gives
many nice examples where the distinction between pure and applied
mathematics is blurred. His answer to the question of which of these
Meg should choose is, in effect, "Both!"
I knew from the time I was a high school student that I wanted to be
a mathematician. My schoolteachers had put me in contact with R.
Balasubramanian, a number theorist in Madras, and I learned from him
what a career in mathematics would be like. I remember asking him
how he decided to be a mathematician, and the short answer was
"purely by chance." He was good at math but had had no
concept that one could make a living at it. Somehow he ended up in
graduate school and became a mathematician. As for Hardy, being a
mathematician meant for him "a Fellowship at Trinity College,
Cambridge," along with "port and walnuts in the Senior
Combination Room."
Stewart's book may be heartily recommended to any young person
considering a future in the field, and indeed to anyone with more
than a passing interest in mathematics or mathematicians.
Connect With Us:

An early peek at each new issue, with descriptions of feature articles, columns, and more. Every other issue contains links to everything in the latest issue's table of contents.

News of book reviews published in
American Scientist
and around the web, as well as other noteworthy happenings in the world of science books.
To sign up for automatic emails of the
American Scientist Update
and
Scientists' Nightstand
issues, create an
online profile
, then sign up in the
My AmSci area
.
Receive notification when new content is posted from the entire website, or choose from the customized feeds available.
JSTOR, the online academic archive, contains complete back issues of American Scientist from 1913 (known then as the Sigma Xi Quarterly) through 2005.
The table of contents for each issue is freely available to all users; those with institutional access can read each complete issue.
View the full collection here.
Sending...
Your email has been sent