BOOK REVIEW

# All Strung Out?

*The Trouble with Physics: The Rise of String Theory, the Fall of
a Science, and What Comes Next*. Lee Smolin. xxiv + 392 pp.
Houghton Mifflin, 2006. $26.

*Not Even Wrong: The Failure of String Theory and the Search for
Unity in Physical Law*. Peter Woit. xi + 291 pp. Basic
Books, 2006. $26.96.

The 1970s were an exhilarating time in particle physics. After decades of effort, theoretical physicists had come to understand the weak and strong nuclear forces and had combined them with the electromagnetic force in the so-called Standard Model. Fresh from this success, they turned to the problem of finding a unified theory, a single principle that would account for all three of these forces and the properties of the various subatomic particles. Some investigators even sought to unify gravity with the other three forces and to resolve the problems that arise when gravity is combined with quantum theory.

The Standard Model is a quantum field theory, in which particles behave as mathematical points, but a small group of theorists explored the possibility that under enough magnification, particles would prove to be oscillating loops or strands of "string." Although this seemingly odd idea attracted little attention at first, by 1984 it had become apparent that this approach was able to solve some key problems that otherwise seemed insurmountable. Rather suddenly, the attention of many of those working on unification shifted to string theory, and there it has stayed since.

Today, after more than 20 years of concentrated effort, what has
been accomplished? What has string theory predicted? Lee Smolin, in
*The Trouble with Physics*, and Peter Woit, in *Not
Even Wrong*, argue that string theory has largely failed.
What is worse, they contend, too many theorists continue to focus
their efforts on this idea, monopolizing valuable scientific
resources that should be shifted in more promising directions.

Smolin presents the rise and fall of string theory as a morality play. He accurately captures the excitement that theorists felt at the discovery of this unexpected and powerful new idea. But this story, however grippingly told, is more a work of drama than of history. Even the turning point, the first crack in the facade, is based on a myth: Smolin claims that string theorists had predicted that the energy of the vacuum—something often called dark energy—could not be positive and that the surprising 1998 discovery of the accelerating expansion of the universe (which implies the existence of positive dark energy) caused a hasty retreat. There was, in fact, no such prediction. Although his book is for the most part thoroughly referenced, Smolin cites no source on this point. He quotes Edward Witten, but Witten made his comments in a very different context—and three years after the discovery of accelerating expansion. Indeed, the quotation is doubly taken out of context, because at the same meeting at which Witten spoke, his former student Eva Silverstein gave a solution to the problem about which he was so pessimistic. This episode also goes to show that, contrary to another myth, young string theorists are not so intimidated by their elders.

As Smolin charts the fall of string theory, he presents further misconceptions. For example, he asserts that a certain key idea of string theory—something called Maldacena duality, the conjectured equivalence between a string theory defined on one space and a quantum field theory defined on the boundary of that space—makes no precise mathematical statements. It certainly does. These statements have been verified by a variety of methods, including computer simulations. He also asserts that the evidence supports only a weak form of this conjecture, without quantum mechanics. In fact, Juan Maldacena's theory is fully quantum mechanical.

A crucial principle, according to Smolin, is background independence—roughly speaking, consistency with Einstein's insight that the shape of spacetime is dynamical—and Smolin repeatedly criticizes string theory for not having this property. Here he is mistaking an aspect of the mathematical language being used for one of the physics being described. New physical theories are often discovered using a mathematical language that is not the most suitable for them. This mismatch is not surprising, because one is trying to express something that is different from anything in previous experience. For example, Einstein originally formulated special relativity in language that now seems clumsy, and it was mathematician Hermann Minkowski's introduction of four-vectors and spacetime that made further progress possible.

In string theory it has always been clear that the physics is background-independent even if the language being used is not, and the search for more suitable language continues. Indeed, as Smolin belatedly notes, Maldacena duality provides a solution to this problem, one that is unexpected and powerful. That solution is still not complete: One must pin down spacetime on the edges, but in the middle it is free to twist and even tear as it will, and black holes can form and then decay. This need to constrain the edges is connected with a property known as the holographic principle, which appears to be an essential feature of quantum gravity. Extending this principle to spaces with the edges free will require a major new insight. It is possible that the solution to this problem already exists among the alternative approaches that Smolin favors. But his principal candidate (loop quantum gravity) is, as yet, much more background-dependent than the current form of string theory.

Much of Smolin's criticism of string theory deals with its lack of mathematical rigor. But physics is not mathematics. Physicists work by calculation, physical reasoning, modeling and cross-checking more than by proof, and what they can understand is generally much greater than what can be rigorously demonstrated. For example, quantum field theory, which underlies the Standard Model and much else in physics, is notoriously difficult to put on a rigorous foundation. Indeed, much of the interest that mathematicians have in physics, and in string theory in particular, arises not from its rigor but from the opposite: Physicists by their methods can obtain new results whose mathematical underpinning is not obvious. String theorists have a strong sense that they are discovering something, not inventing it. The process is sometimes messy, with unexpected twists and turns (not least the strings themselves!), and rigor is not the main tool.

Woit covers some of the same ground, although his interests are more centered on particle physics and on the connection with mathematics than on the nature of spacetime. His telling is more direct, but it is rather stuffed with detail and jargon, and his criticisms of string theory are simpler and somewhat repetitious.

A major point for Woit is that no one knows exactly what string theory is, because it is specified only through an infinite mathematical series whose sum is ill-defined. This assertion is partly true: With new physical theories there is often a long period between the first insight and the final mathematical form. For quantum field theory, the state of affairs that Woit describes lasted for half a century. In string theory the situation is much better than he suggests, because for 10 years we have had tools (dualities) that in many cases give us a precise definition of the theory. These have led in turn to many new applications of string theory, such as to the quantum mechanics of black holes, and there are hints to a more complete understanding.

But what about the lack of predictions? This is the key question, for Woit, for Smolin and for string theory. Why have the last 20 years been a time of unusually little contact between theory and experiment? The problem is partly on the experimental side: The Standard Model works too well. It takes great time, ingenuity and resources to try to look beyond it, and often what is found is still the Standard Model.

A second challenge was set forth by Max Planck more than a century
ago. When one combines the fundamental constants of special
relativity, general relativity and quantum mechanics, one finds that
they determine a distance scale at which these theories appear to
come together:the Planck length of 10^{-33} centimeters. To
put this number in perspective, one would have to magnify an atom a
billion times to make it the size of a coffee cup, andone would have
to magnify the Planck length a trillion trillion times to make it
the size of an atom. If we could probe the Planck length directly,
we would be able to see the strings and extra dimensions, or
whatever else is lurking there, and be done with it. But we'll never
be able to do that. So instead, we must look for indirect evidence.
And, as was the case with atomic theory, one cannot predict how long
such a leap will take.

Smolin addresses the problem of the Planck length ("It is a lie," he says). Indeed, Planck's calculation applies to a worst-case scenario. String theorists have identified at least half a dozen ways that new physics might arise at accessible scales, and Smolin points to another in the theories that he favors, but for now, these are just possibilities. As far as experiment yet shows, Planck's challenge stands.

Or it may be that string theory has already made a connection with observation—one of immense significance. Positive dark energy is the greatest experimental discovery of the past 30 years regarding the basic laws of physics. Its existence came as a surprise to almost everyone in physics and astronomy, except for a small number, including, in particular, Steven Weinberg.

In the 1980s, Weinberg had been trying to solve the long-standing puzzle of why the density of dark energy is not actually much greater. He argued that if the underlying theory had multiple vacua describing an enormous number of potential universes, it would not only explain why the density of dark energy is not high, but would also predict that it is not zero. Weinberg's reasoning was contrary to all conventional wisdom, but remarkably his prediction was borne out by observation a decade later.

The connection between string theory and dark energy is still a subject of much controversy, and it may be that Weinberg got the right answer for the wrong reason. However, it may well turn out that he got the right answer for the right reason. If so, it will be one of the great insights in the history of physics, and the multivacuumproperty of string theory, seemingly one of its main challenges, will, in fact, be just what nature requires.

A second unexpected connection comes from studies carried out using the Relativistic Heavy Ion Collider, a particle accelerator at Brookhaven National Laboratory. This machine smashes together nuclei at high energy to produce a hot, strongly interacting plasma. Physicists have found that some of the properties of this plasma are better modeled (via duality) as a tiny black hole in a space with extra dimensions than as the expected clump of elementary particles in the usual four dimensions of spacetime. The prediction here is, again, not a sharp one, and string-theory skeptics could take the point of view that it is just a mathematical spinoff. However, one of the repeated lessons of physics is unity—nature uses a small number of principles in diverse ways. And so the quantum gravity that is being used to understand the experiments at Brookhaven is likely to be the same one that operates everywhere else in the universe.

A further development over the past few years, as our understanding has deepened, has been the extensive study of the experimental consequences of specific kinds of string vacua. Many of these make distinctive predictions for particle physics and cosmology. Most or all of these may well be falsified by experiment (which is, after all, the fate of most new models). The conclusive test of string theory may still be far off. In the meantime, science proceeds through many small steps.

A central question for both Smolin and Woit is why so many very good scientists continue to work on an idea that has allegedly failed so badly. Both books offer explanations in terms of the sociology of science and the psychology of scientists. These forces do exist, and it is worth reflecting on their possible negative effects, but such influences are not as strong as these authors posit. String theorists include mavericks and contrarians, strong-willed individuals who have made major contributions—not just in string theory but in other parts of physics as well. The borders between string theory and other areas of physics are not closed, and theorists would emigrate if they did not believe that they were already stomping around the most promising territory.

In fact, the flow of intellectual talent has been in the other direction: In recent years, leading scientists in particle phenomenology, inflationary cosmology and other fields have found ideas generated by string theory to be useful in their disciplines, just as mathematicians have long done. Many have begun to work with string theorists and have in turn contributed their perspectives to the subject and expanded the view of how string theory relates to nature.

This convergence on an unproven idea is remarkable. Again, it is worth taking a step back and reflecting on whether the net result is the best way to move science forward, and in particular whether young scientists are sufficiently encouraged to think about the big questions of science in new ways. These are important issues—and not simple ones. However, much of what Smolin and Woit attribute to sociology is really an issue of scientific judgment.

In the end, these books fail to capture much of the spirit and logic
of string theory. For that, either Brian Greene's *The Elegant
Universe* (first published in 1999)or Leonard Susskind's *The
Cosmic Landscape* (2005) does a better job**.**
The interested reader might also look to particle phenomenologist
Lisa Randall's *Warped Passages* (2005) and
cosmologistAlexander Vilenkin's *Many Worlds in One* (2006)
for accounts by two scientists from other fields who have seen a
growing closeness between string theory and their ideas about how
the cosmos is put together.

**IN THIS SECTION**

Community Guidelines: Disqus Comments

**BROWSE BY**

- Nanoview

- Reviewer

- Topic

- Issue

# Connect With Us:

# Subscribe to Free eNewsletters!

*American Scientist Update: Energy-Water Nexus, Limits of Science, Fool's Gold, and More Science Stories**Scientists' Nightstand: Holiday Special!*News of book reviews published in

An early peek at each new issue, with descriptions of feature articles, columns, and more. Issues contain links to everything in the latest issue's table of contents.

*American Scientist*and around the web, as well as other noteworthy happenings in the world of science books.

To sign up for automatic emails of the

*American Scientist Update*and

*Scientists' Nightstand*issues, create an online profile, then sign up in the My AmSci area.

# RSS Feed Subscription

Receive notification when new content is posted from the entire website, or choose from the customized feeds available.

# Read Past Issues on JSTOR

JSTOR, the online academic archive, contains complete back issues of *American Scientist* from 1913 (known then as the *Sigma Xi Quarterly*) through 2005.

The table of contents for each issue is freely available to all users; those with institutional access can read each complete issue.

View the full collection here.

EMAIL TO A FRIEND :

**Of Possible Interest**

**Book Review**: Don't Try This at Home

**Book Review**: Stocking Nature’s Arsenal

**Nanoview**: The Life of a Star